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Quantum electrodynamics is the well-accepted theory. However, we feel it is
useful to look at formalisms that provide alternative ways to describe light,
because in the recent years the development of quantum field theories based
primarily on the gauge principle has encountered considerable difficulties.
There is a wide variety of generalized theories, and they are characterized
mainly by the introduction of additional parameters and/or longitudinal
modes of electromagnetism. The Majorana-Oppenheimer form of electrody-
namics, the Sachs theory of Elementary Matter, the analysis of the action-at-
a-distance concept, presented recently by Chubykalo and Smirnov-Rueda,
and the analysis of the claimed ‘longitudinality’ of the antisymmetric tensor
field after quantization are reviewed in this essay. We also list recent ad-
vances in the Weinberg 2(2J + 1) formalism (which is built on First Princi-
ples) and in the Majorana theory of neutral particles. These may serve as
starting points for constructing a quantum theory of light.

Maxwell’s electromagnetic theory perfectly describes many observed phenomena.
The accuracy of the predictions of quantum electrodynamics is without precedent [1].
These are widely accepted as the only tools for dealing with electromagnetic phenomena.
Other modern field theories have been built on the basis of similar principles to treat
weak, strong and gravitational interactions. Nevertheless, many scientists have felt a cer-
tain dissatisfaction with both of these theories, almost since their inception, see, e.g., refs.
[2] and refs. [4-6]. In the preface to the Dover edition of his book [7] A. Barut writes (1979):
“Electrodynamics and the classical theory of fields remain very much alive and continue
to be the source of inspiration for much of the modern research work in new physical
theories.” And in the preface to the first edition he speaks of the shortcomings of modern
quantum field theory. These are well known. Furthermore, in spite of great expectations
in the sixties and seventies after the proposal of the Glashow-Salam-Weinberg model and
quantum chromodynamics, attempts to formulate a unified field theory based on the
gauge principle have run into serious difficulties.

At the end of the nineties, we now have considerable experimental data at our dis-
posal which are not satisfactorily explained on the basis of the standard model. First of all,
we may single out the following: the LANL neutrino oscillation experiment; the atmos-
pheric neutrino anomaly, the solar neutrino puzzle (all of the above-mentioned imply
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existence of the neutrino mass); the tensor coupling in decays of π–– and K+ mesons; the
dark matter problem; the observed periodicity of the number distribution of galaxies, and
the ‘spin crisis’ in QCD. Added to this are experiments and observations involving su-
perluminal phenomena: negative mass-square neutrinos, tunnelling photons, X-shaped
waves and superluminal expansion in quasars and galactic objects.

In the meantime, since the time the Lorentz-Poincaré-Einstein Theory of Relativity [8]
was proposed and the mathematical formalism of the Poincaré group [9] was introduced,
many physicists (including A. Einstein, W. Pauli and M. Sachs) have felt that in order to
build a reliable theory (which would be based on relativistic ideas) one must utilize the
irreducible representations of the underlying symmetry group— the Poincaré group of
special relativity— and the Principle of Causality, i.e. it must be built from first principles.
Considerable effort has been made recently in this direction [10-17]. Since the prediction
and discovery of an additional phase-free variable, spin, which all observed fundamental
particles have, finding its classical analogue and relating it to known fields and/or space-
time structures (perhaps in higher dimensions) has been one of the chief tasks of physi-
cists. Understanding the nature of mass, the parity violation effect on the kinematical
level and the reasons for the different scales of different interactions has been on the list
as well. We can now say that some progress has been achieved. At the end of this intro-
ductory part we note that although the Ultimate Theory has not yet been proposed, the
recent papers of D. V. Ahluwalia, M. W. Evans*, E. Recami and several other works pro-
vide a sufficiently clear way to this goal.

We deal first with the historical development and ideas that may prove useful in
making further progress.

E = 0 solutions. First of all, I would like to mention the problem of existence of ‘acausal’
solutions of relativistic wave equations of the first order. In ref. [10] and then in [11] the
author, D. V. Ahluwalia, found that massless equations of the form†

J p p⋅ − =po R1b g b gφ 0 , (1a)
J p p⋅ + =po L1b g b gφ 0 (1b)

have acausal dispersion relations, see Table 2 in [10]. In the case of the spin j = 1 this
manifests in existence of the solution with the energy E = 0. Some time ago we learned
that the same problem has been discussed by J. R. Oppenheimer [18], S. Weinberg [19b]
and E. Gianetto [20c]. For instance, Weinberg has indicated that

“for j = 1
2  [the equations (1a,1b)] are the Weyl equations for the left−  and

right− handed neutrino fields, while for j = 1 they are just Maxwell’s free− space
equations for left−  and right− circularly polarized radiation:

∇ × − + − =E B E Bi i
t

i∂
∂

0 , (2a)

                                                       
* Although I frequently disagree with Dr. M.W. Evans, his main idea is reasonable.
† Here and below in this historical essay we try to keep the notation and the metric of original papers.
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∇ × + − + =E B E Bi i
t

i∂
∂

0 (2b)

The fact that these field equations are of first order for any spin seems to me to be of
no great significance, since in the case of massive particles we can get along perfectly
well with (2j+ 1)–component fields which satisfy only the Klein− Gordon equation.”

This is obviously a remarkable and bold conclusion by this great physicist.
Oppenheimer was also concerned with the E = 0 solution [p.729,730,733,735] [18] and

he indicated at its connection with the electrostatic solutions of Maxwell’s equations. “In
the absence of charges there may be no such field.” At first sight this seems contradictory:
free-space Maxwell’s equations do not contain ρe or ρm terms, the charge densities, but
dispersion relations still tell us about the solution E = 0. He deals further with the matters
of relativistic invariance of the matrix equation (p. 733) and suggests that the components
of ψ  (φR,L in the notation of [10,11]) transform under pure Lorentz transformations like the
space components of a covariant 4-vector. This induces him to extend the matrices and
the wave functions to include the fourth component. A similar formulation was devel-
oped by Majorana [20]. If so, it would be already difficult to consider φR,L as Helmoltz bi-
vectors because they have different laws for pure Lorentz transformations. What does the
4-component function (and its space components) correspond to? Finally, he indicated (p.
728) that cτ, the angular momentum matrices, and the corresponding density-flux vector
may “play in some respects the part of the velocity”, with eigenvalues 0, ±c. Thus, in my
opinion, the formula (5) of the paper [18] may have some relations with the discussion of
the convection displacement current in [3], see below.

Finally, M. Moshinsky and A. Del Sol found a solution of similar nature in a two-body
relativistic problem [21]. Of course, it is connected with earlier considerations, e.g., with
the problem of the relative time in the quasipotential approach. In order to try to under-
stand the physical sense of the E = 0 solutions and the corresponding field components,
let us consider other generalizations of the Maxwell formalism.

The ‘baroque’ formalism. In this formalism, proposed in the fifties by K. Imaeda [22] and T.
Ohmura [23], who intended to solve the problem of electron stability, additional scalar
and pseudoscalar fields are introduced in Maxwell’s theory. Monopoles and magnetic
currents are also present in this theory. The equations become the following:

rot gradH E i− = −∂
∂x

e
o

, (3a)

rot gradE H i+ = +∂
∂x

h
o

, (3b)

div E = +ρ ∂
∂

e
xo

, (3c)

div h
xo

H = − +σ ∂
∂

. (3d)
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“Each of E and H is separated into two parts E(1) + E(2) and H(1) + H(2): one is the solu-
tion of the equations with j,σ, h zero, and other is the solution of the equations with i, ρ, e
zero.” Furthermore, T. Ohmura indicated the existence of longitudinal photons in her
model: “It will be interesting to test experimentally whether the γ-ray keeps on its trans-
verse property even in the high energy region as derived from the Maxwell theory or it
does not as predicted from our hypothesis.” In fact, equations (3a)-(3d) can be written in
matrix notation, which leads to the known Majorana-Oppenheimer formalism for the
(0,0)⊕ (1,0) [or (0,0)⊕ (0,1)] representation of the Poincaré group [20,18], see also [24]. In a
form with the Majorana-Oppenheimer matrices

ρ ρ1 2

0 1 0 0
1 0 0 0

0 0 0
0 0 0

0 0 1 0
0 0 0
1 0 0 0

0 0 0

=

−
−

−

F

H

GGGG

I

K

JJJJ
=

−

−
−

F

H

GGGG

I

K

JJJJi
i

i

i

' , (4a)

ρ ρ3
4 4

0 0 0 1
0 0 0
0 0 0
1 0 0 0

=

−
−

−

F

H

GGGG

I

K

JJJJ
= ×

i
i

o, 1 , (4b)

and ρ ρo o≡ , ρ ρi i≡ −  the equations without an explicit mass term are written
ρ ∂ ψ φµ

µc h a f a f1 1x x= , (5a)

ρ ∂ ψ φµ
µc h a f a f2 2x x= . (5b)

The φi are the “quadrivectors” of the sources

φ
ρ σ

φ
ρ σ

1 2=
− +

−
F
HG

I
KJ =

+
− −

F
HG

I
KJ

i
i

i
ij i j i, (6)

The field functions were considered to be

ψ ψ ψ ψµ µ µ µ
1 2

1 1

2 2

3 3

2 1

1 1

2 2

3 3

p C p

i E iB
E i
E iB
E iB
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I

K

JJJJ
* *,Β Β , (7)

where Εo h≡ − , B eo ≡  and

C C C C= =

−F

H

GGGG

I

K

JJJJ
=− −1 1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, *α αµ µ . (8)

When sources are switched off the equations have relativistic dispersion relations
E = ±|p| only. In ref. [20] zero-components of ψ  have been connected with π ∂µ

µ
o A= ,

the zero-component of the canonically conjugate momentum to the field Aµ. H. E. Moses
developed the Oppenheimer’s idea [18] that the longitudinal part of the electromagnetic
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field is connected somehow with the sources which created it [Eq.(5.21)] [25]. Moreover, it
was mentioned in this work that even after the switchoff of the sources, the localized field
can possess the longitudinal component (Example 2). Then, he made a convention which,
in my opinion, is required to give more rigorous scientific basis: “… ψ A is not suitable for a
final field because it is not purely transverse. Hence we shall subtract the part whose di-
vergence is not zero.”

Finally, we should mention ref. [26]. The proposed formalism is connected with the
formalism of the previously cited works (and with the massive Proca theory). Two of
Maxwell’s equations remain unchanged, but one has additional terms in two other ones:

∇ × − = −H D J A∂
∂ µt o

1
2l

, (9a)

∇ ⋅ = −D ρ ε o V
l2 , (9b)

where l is of the dimensions length and is suggested by Lyttleton and Bondi to be of the
order of the radius of the Universe. A and V are the vector and scalar potentials, which
put back into two Maxwell’s equations for strengths. So, these additional terms contain
information about possible effects of the photon mass. This was applied to explain the
expansion of the Universe. The Watson generalization, also discussed in [26b], is based on
the introduction of the additional gradient current [as in Eqs. (3a, 3c)] and, in fact, repeats
in essence the Majorana-Oppenheimer and Imaeda-Ohmura formulations. On a scale
much smaller than a radius of the Universe, both formulations were shown by Chambers
to be equivalent. The difference obtained is of order l–2 at the most. In fact, both formula-
tions were noted by Chambers to be able to describe local creation of the charge. The
question of the integral conservation of the charge over the volume still deserves elabora-
tion, the question of possibility to observe such a type of non-conservation as well. These
questions may be connected with the boundary conditions on the sphere of the radius l.

The theory of Elementary Matter. The formalism proposed by M. Sachs [27,28] is on the basis
of the consideration of “spinorial” functions composed of 3-vector components:

φ φ1
3

1 2
2

1 2

3
= +
F
HG

I
KJ

−
−

F
HG

I
KJ

G
G iG

G iG
G, , (10)

where Gk = Hk + iEk (k = 1,2,3). 2-component functions of the currents are constructed in
the following way:

ϒ = −
+
+

F
HG

I
KJ ϒ = −

−
−

F
HG

I
KJ1

3

1 2
2

1 2

3
4 4π

ρ
π ρi

j
j ij i

j ij
j, . (11)

The dynamical equation in this formalism reads
σ ∂ φµ

µ α α=ϒ . (12)

…  Eq. (12) is not equivalent to the less general form of Maxwell’s equations. That is
to say the spinor equations (12) are not merely a rewriting of the vector form of the
field equations, they are a true generalization in the sense of transcending the pre-
dictions of the older form while also agreeing with all of the correct predictions of the



Page 74 APEIRON Vol. 5 Nr. 1-2, January-April 1998

latter … Eq. (12) may be rewritten in the form of four conservation equations
∂ φ σ φ φ φµ α

µ
β α β α β

† † †d i= ϒ + ϒ  [which] entails eight real conservation laws.

For instance, these equations could serve as a basis for describing parity-violating in-
teractions [27a], and can account for the spin-spin interaction as well from the beginning
[27d,p.934]. The formalism was applied to explain several puzzles in neutrino physics.
The connection with the Pauli Exclusion Principle was revealed. The theory, when the
interaction (‘matter field labeling’) is included, is essentially bi-local.‡

“What was discovered in this research program, applied to the particle-antiparticle
pair, was that an exact solution for the coupled field equations for the pair, in its rest
frame, gives rise (from Noether’s theorem) to a prediction of null energy, momen-
tum and angular momentum, when it is in this particular bound state.” [28]

Later [28] this type of equations was written in the quaternion form with the continu-
ous function µ λ= h c  identified with the inertial mass. Thus, an extension of the model
to the general relativity case was proposed. Physical consequences of the theory are: a)
the formalism predicts while small but non-zero masses and the infinite spectrum of
neutrinos; b) the Planck spectral distribution of black body radiation follows; c) the hy-
drogen spectrum (including the Lamb shift) was deduced; d) bases for the charge quanti-
zation are proposed; e) the lifetime of the muon state was predicted; f) the electron-muon
mass splitting was discussed,

“… the difference in the mass eigenvalues of a doublet depends on the alteration of
the geometry of space-time in the vicinity of excited pairs of the ‘physical vacuum’
[‘a degenerate gas of spin-zero objects,’ longitudinal and scalar photons, in fact! V.
V. D.]—leading, in turn, to a dependence of the ratio of mass eigenvalues on the
fine-structure constant”.

That was impressive work and these are impressive results!

Quantum mechanics of phase. A. Staruszkiewicz [29,30] considers the Lagrangian and the
action of a potential formulation for the electromagnetic field, which include a longitudi-
nal part:

S x F F A
e

S= − + + ∂ ∂F
HG

I
KJ

RS|T|
UV|W|z1

16
2 1 2

π
γ∂µν

µν µ
µ µ

µd4 . (13)

S is a scalar field called the phase. As a matter of fact, this formulation was shown to be a
development of the Dirac-Fock-Podol’sky model in which the current is a gradient of
some scalar field [31]:

4π ∂ν νj F= − . (14)
The modified Maxwell’s equations are written:

∂ ∂ ∂λ µν µ νλ ν λµF F F+ + = 0 , (15a)

                                                       
‡ The hypothesis of the non-local nature of charge seems to have been first proposed by J. Frenkel.
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∂ ∂µ
µν νF F+ = 0 . (15b)

Again we see a gradient current and, therefore, the Dirac-Fock-Podol’sky model is a sim-
plified version (apparently without monopoles) of the more general Majorana-
Oppenheimer theory. Staruszkiewicz posed the following questions [30], see also [23b]
and [32]: “Is it possible to have a system, whose motion is determined completely by the
charge conservation law alone? Is it possible to have a pure charge not attached to a
nonelectromagnetic piece of matter?” and answering came to the conclusion “that the
Maxwell electrodynamics of a gradient current is a closed dynamical system.” The inter-
pretation of a scalar field as a phase of the expansion motion of a charge under repulsive
electromagnetic forces was proposed. “They [the Dirac-Fock-Podol’sky equations] de-
scribe a charge let loose by removal of the Poincaré stresses.” The phase was then related
with the vector potential by means of [30e,p.902]

S x e A x y j y y j y ya f b g b g b g b ga f= − − ∂ = ∂z µ
µ

µ
µd4 , 4 . (16)

Formula (16) is reminiscent to the Barut self-field electrodynamics [33]. This should be
investigated by taking the 4-divergence of Barut’s anzatz.

Next, the operator of a number of zero-frequency photons was studied. The total
charge of the system, found on the basis of the Noether theorem, was connected with the
change of the phase between the positive and the negative time-like infinity:
Q S Se= − + ∞ − − ∞4π a f a f . It was shown that eiS, having a Bose-Einstein statistics, can serve
itself as a creation operator: Qe Q e e eiS iS iS0 0 0= = −, . Questions of fixing the factor γ
by appropriate physical conditions were also answered. Finally, the Coulomb field was
decomposed into irreducible unitary representations of the proper orthochronous Lor-
entz group [34]. Both representations of the main series and the supplementary series
were regarded. In my opinion, this research can help to understand the nature of the
charge and of the fine structure constant.

Invariant evolution parameter. The theory of electromagnetic field with an invariant evolu-
tion parameter (τ , the Newtonian time) has been worked out by L. P. Horwitz [35-37]. It
is a development of the Stueckelberg formalism [38] and I consider this theory as an im-
portant step to understanding the nature of our space-time. The Stueckelberg equation

i x K x∂
∂

=ψ
τ

ψτ
τ

a f a f (17)

is deduced on the basis of his worldline classical relativistic mechanics with following set-
ting up the covariant commutation relations x p igµ ν µν, = . Remarkably, he proposed a
classical analogue of antiparticle (which, in fact, has been later used by R. Feynman) and
of annihilation processes. As noted by Horwitz if one insists on the U(1) gauge invariance
of the theory based on the Stueckelberg-Schrödinger equation (17) one arrives at the 5-
potential electrodynamics ( i i eo∂ → ∂ +τ τ α 5 ) where the equations, which are deduced by
means of the variational principle, read
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∂ =β
αβ αf j , (18)

(α, β = 1… 5), with an additional fifth component of the conserved current ρ = |ψ τ (x)|2.
The underlying symmetry of the theory can be O(3,2) or O(4,1) “depending on the choice
of metric for the raising and lowering of the fifth (τ) index [35]”. For Minkowski-space
components the equation (18) is reduced to ∂ + ∂ =ν

µν
τ

µ µf f j5 . The Maxwell theory is
recovered after integrating over τ from –∞  to ∞ , with appropriate asymptotic conditions.
The formalism has been applied mainly in the study of the many-body problem and in
the measurement theory, namely, bound states (the hydrogen atom), the scattering
problem, the calculation of the selection rules and amplitudes for radiative decays, a co-
variant Zeeman effect, the Landau-Peierls inequality. Two crucial experiments which
may check validity and may distinguish the theory from ordinary approaches have also
been proposed [p.15] [37].

Furthermore, one should mention that in the framework of the special relativity ver-
sion of the Feynman-Dyson proof of the Maxwell’s equations [39] S. Tanimura came to
rather unexpected conclusions [40] which are related with the formulation defended by
L. Horwitz. Trying to prove the Maxwell’s formalism S. Tanimura arrived at the conclu-
sion about a theoretical possibility of its generalization. According to his consideration the
4-force acting on the particle in the electromagnetic field must be expressed in terms of

F x x G x F x xµ µ µ
ν

ν, & &a f a f a f= + , (19)
where the symbol <…> refers to the Weyl-ordering prescription. The fields G xµ a f ,
F xµ

νa f  satisfy§

∂ − ∂ =µ ν ν µG G 0 , (20a)
∂ + ∂ + ∂ =µ νρ ν ρµ ρ µνF F F 0 . (20b)

This implies that apart from the 4-vector potential F A Aµν µ µ ν µ= ∂ − ∂  there exists a scalar
field φ(x) such that Gµ = ∂µφ. One may try to compare this result with the fact of existence
of additional scalar field components in the Majorana-Oppenheimer formulation of elec-
trodynamics and with the Stueckelberg-Horwitz theory. The latter has been done by Prof.
Horwitz himself [35c] by the identification Fµ5 = –F5µ = Gµ and the explicit demonstration
that for the off-shell theory the Tanimura’s equations reduce to

∂ + ∂ + ∂ =µ νρ ν ρσ ρ µνF F F 0 , (21a)

∂ − ∂ +
∂
∂

=µ ν ν µ
µν

τ
G G

F
0 , (21b)

mx G x F x x&& , , &µ µ µν
ντ τ= +a f a f . (21c)

Finally, among theories with additional parameters one should mention the quantum
field model built in the de Sitter momentum space p p p p p M5

2
4
2

3
2

2
2

1
2 2− − − − = , ref. [41].

The parameter M is considered as a new physical constant, the fundamental mass. In a
configurational space defined on the basis of the Shapiro transformations the equations

                                                       
§ One may wish to repeat the Tanimura proof for dual fields and obtain some additional equations.
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become the finite-difference equations thus leading to the lattice structure of the space. In
the low-energy limit ( M → ∞ ) the theory is equivalent to the standard one.

Action-at-a-distance. In the paper [42] A. E. Chubykalo and R. Smirnov-Rueda argued on
the basis of the analysis of the Cauchy problem of the D’Alembert and Poisson equations
that one should revive the concept of the instantaneous action-at-a-distance in classical
electrodynamics. The essential feature of the formalism is in introduction of two types of
field functions, with the explicit and implicit dependencies on time. The energy of longi-
tudinal modes in this formulation cannot be stored locally in the space, the spread veloc-
ity may be whatever and so, they believe, that one has also E = 0. The new convection
displacement current was proposed in [3] on the basis of the development of this wis-
dom. It has a form jdisp = − ⋅∇1

4π v Ea f . This is a resurrection of the Hertz’ ideas (later
these ideas have been defended by T. E. Phipps, Jr.) to replace the partial derivative by
the total derivative in the Maxwell’s equations. In my opinion, one can also reveal some
connections with the Majorana-Oppenheimer formulation following to the analysis of
ref. [p.728] [18].

F. Belinfante [43a] appears to come even earlier to the Sachs’ idea about the “physical
vacuum” as pairs of some particles from a very different viewpoint. In his formulation of
the quantum-electrodynamic perturbation theory zero-order approximation is deter-
mined in which scalar and longitudinal photons are present in pairs. He also considered
[43b] the Coulomb problem in the frameworks of the quantum electrodynamics and
proved that the signal can be transmitted with the velocity greater than c. So, this old
work appears to be in accordance with recent experimental data (particularly, with the
claims of G. Nimtz et al. [44] about a wave packet propagating faster than c through a bar-
rier, which was used “to transmit Mozart’s Symphony No. 40 through a tunnel of 114 mm
length at a speed of 4.7c”). As indicated by E. Recami in a private communication the
E = 0 solutions can be put in correspondence to a tachyon of the infinite velocity.
Evans-Vigier B(3) field. In a recent series of remarkable papers (in FPL, FP, Physica A and B,
Nuovo Cimento B) and books M. Evans and J.-P. Vigier have indicated the possibility of
consideration of the longitudinal B(3) field for describing many electromagnetic phenom-
ena and in cosmological models as well [12]. It is connected with transverse modes

B i j1
0

2
a f a f b g= +B i eiφ , (22a)

B i j2
0

2
a f a f b g= − + −B i e iφ , (22b)

φ ω= − ⋅t k r , by means of the cyclic relations
B B B1 2 0 3a f a f a f a f× = iB * , (23a)
B B B2 3 0 1a f a f a f a f× = iB * , (23b)
B B B3 1 0 2a f a f a f a f× = iB * . (23c)

The indices (1), (2), (3) denote vectors connected by the relations of the circular basis
and, thus, the longitudinal field B(3) presents itself a third component of the 3-vector in
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some isovector space. “The conventional O(2) gauge geometry is replaced by a non-
Abelian O(3) gauge geometry and the Maxwell equations are thereby generalized” in this
approach. Furthermore, some success in the problem of the unification of gravitation and
electromagnetism has been achieved in recent papers by M. Evans [45]. It has been
pointed out by several authors, e.g.,[13,46] that this field is the simplest and most natural
(classical) representation of a particles spin, the additional phase-free discrete variable
discussed by Wigner [9]. The consideration by Y. S. Kim et al., see ref. [47a,formula (14)],
ensures that the problem of physical significance of the Evans-Vigier-type longitudinal
modes is related with the problem of the normalization and of existence of the mass of a
particle transformed on the (1,0)⊕ (0,1) representation of the Poincaré group. Considering
explicit forms of the (1,0)⊕ (0,1) “bispinors” in the light-front formulation [49] of the
quantum field theory of this representation (the Weinberg-Soper formalism) D. V. Ahlu-
walia and M. Sawicki [15a] showed that in the massless limit one has only two non-
vanishing Dirac-like solutions. The “bispinor” corresponding to the longitudinal solution
is directly proportional to the mass of the particle. So, the massless limit of this theory, the
relevance of the E(2) group to describing physical phenomena and the problem of what is
mass deserve further research.

The idea of longitudinal modes related with the electromagnetic field is not so new as
it appears at the present time. E. T. Whittaker in the beginning of the century [48] consid-
ered the general solution of the D’Alembert wave equation and concluded that “the
functions which define the resulting electrodynamic field …  can be expressed in terms of
the derivatives of two scalar potential functions”. The direction of corresponding vectors
may be chosen in such a way that they are aligned themselves. The physically observable
fields are then

d f g= curl curl +curl 1
c
& , (24a)

h f g= −curl 1 curl curl
c
& , (24b)

where d and h are the electric and magnetic vectors. The field created by arbitrary mov-
ing electrons also can be expressed in the terms of f and g. In modern language, these
“longitudinal” functions f and g (with magnitudes |f| = F, |g| = G) may be related to the
Hertz potentials H µν ,**

Fµν µ
λ

λν ν
λ

λµ= ∂ ∂ − ∂ ∂H H . (25)
Reducing the Whittaker’s general solution to the plane wave (which are in overall use) is
straightforward from his formulation.

Antisymmetric tensor fields. To the best of my knowledge, modern research into antisym-
metric tensor fields in the quantum theory began from the paper by V. I. Ogievetskii and
I. V. Polubarinov [50]. They claimed that the antisymmetric tensor field (notoph in the
                                                       
** Compare this formula with the dynamical equations of the antisymmetric tensor field, e.g., ref.[46,60]. It in-

duces speculations about possible significance of the normalization of the corresponding functions of the
momentum representation.
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terminology used, which I find quite suitable) can be “longitudinal” in the quantum the-
ory, owing to the new gauge invariance

F Fµν µν µ ν ν µ→ + ∂ − ∂Λ Λ (26)
and applications of the supplementary conditions. The result by Ogievetskii and Polu-
barinov has been repeated by K. Hayashi [51], M. Kalb and P. Ramond [52] and T. E.
Clark et al. [53]. The Lagrangian ( F i Fk kjmn jm n= ε , )

LH
k kF F F F F F= = − ∂ ∂ + ∂ ∂1

8
1
4

1
2µ να µ να µ να ν µαc hc h c hc h (27)

after the application of the Fermi method mutatis mutandis (comparing with the case of
the 4-vector potential field) yields the spin dynamical invariant to be equal to zero. While
several authors insisted on the “transversality” of the antisymmetric tensor field and the
necessity of gauge-independent consideration [54-56] perpetually this interpretation
(‘longitudinality’) has become wide-accepted. In refs. [57,58] an antisymmetric tensor mat-
ter field was studied and it appears to be also “longitudinal”, but to have two degrees of
freedom. Unfortunately, the authors of the cited work regarded only a massless real field
and did not take into account the physical reality of the dual field corresponding to an
antiparticle. But, what is important, L. Avdeev and M. Chizhov noted [58] that in such a
framework there exist ′δ -type transverse solutions, which cannot be interpreted as rela-
tivistic particles.

If the antisymmetric tensor field would be pure longitudinal, it appears failure to un-
derstand, why in the classical electromagnetism we are convinced that an antisymmetric
tensor field is a transverse field. This induces speculations about the incorrectness of the
Correspondence Principle. Moreover, this result contradicts with the Weinberg theorem
B – A = λ, ref. [19b]. This situation has been later analyzed in refs. [59,13,60,46,61] and it
was found that indeed the “longitudinal nature” of antisymmetric tensor fields is con-
nected with the application of the generalized Lorentz condition to the quantum states:
∂µFµν|Ψ > = 0. Such a procedure leads also (like in the case of the treatment of the 4-
vector potential field without proper regarding the phase field) to the problem of the in-
definite metric which was noted by Gupta and Bleuler. So, it is already obviously from
methodological viewpoints that the grounds for regarding only particular cases can be
doubted by the Lorentz symmetry principles. Ignoring the phase field of Dirac-Fock-
Podol’sky-Staruszkiewicz or ignoring χ functions [62] related with the 4-current and,
hence, with the possible non-zero vacuum value of ∂µFµν can put obstacles on the way of
creation of the unified field theory and embarrass understanding the physical content
dictated by the Relativity Theory. This is my opinion.

The Weinberg formalism. In the beginning of the sixties the 2(2j+1)- component approach
has been proposed in order to construct a Lorentz-invariant interaction S-matrix from the
first principles [63,64,19,65-68]. The authors had thus some hopes on adequate perturba-
tion calculus for processes including higher-spin particles which appeared in the disposi-
tion of physicists in that time. The field theory in that time was in some troubles.
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The Weinberg anzatzen for the (j,0) ⊕ €(0,j) field theory are simple and obvious
[19a,p.B1318]: a) relativistic invariance

U a x U a D x an nm m
m

Λ Λ Λ Λ, ,ψ ψa f a f− −= +∑1 1 , (28)

where Dmn Λ  is the corresponding representation of Λ. b) causality
ψ ψn mx ya f b g,

±
= 0 (29)

for (x – y) spacelike, which garantees the commutator of the Hamiltonian density  [H(x),
H(y)] = 0, provided that  H(x) contains an even number of fermion field factors. The in-
teraction Hamiltonian  H(x) is constructed out of the creation and annihilation operators
for the free particles described by some Ho, the free-particle part of the Hamiltonian. The
(j,0) ⊕  (0,j) field

ψ
ϕ
χ

x
x
x

a f a f
a f=

F
HG

I
KJ (30)

transforms according to (28), where

D D
D

D D D Dj
j

j
j j j jb g b g

b g
b g b g b g b gΛ Λ

Λ
Λ Λ Λ Λ=

F
HG

I
KJ = =− −0

0
1 1, ,† † β β , (31)

with

β = F
HG

I
KJ

0
0
1

1
, (32)

and, hence, for pure Lorentz transformations (boosts)
D Lj jb g b gb g e jp p J= − ⋅exp $ θ , (33a)

D Lj jb g b gb g e jp p J= + ⋅exp $ θ , (33b)

with sinhθ ≡ p m . Dynamical equations, which Weinberg proposed, are (Eqs. (7.17) and
(7.18) of the first paper [19]):

Π − ∂ =i x m xjb g a f a fϕ χ2 , (34a)
Π − ∂ =i x m xjb g a f a fχ ϕ2 . (34b)

These are rewritten into the form (Eq. (7.19) of [19a])
γ ψµ µ µ

µ µ µ
1 2 2

1 2 2
2 0K Kj

j m xj∂ ∂ ∂ + =a f , (35)
with the Barut-Muzinich-Williams matrices [63]

γµ µ µ
µ µ µ

µ µ µ
1 2 2

1 2 2

1 2 2

2 0
0

K
K

K
j

j

j
i t

t
j= −
F
HG

I
KJ. (36)

The following notation was used
Π ′ ′≡ −σ σ σ σ

µ µ µ
µ µ µ

j jq t q qj
j

b g b g a f1 2 1 2 2
1 2 2

K K , (37)

Π Π Π′ ′
−≡ − =σ σ σ σ

µ µ µ
µ µ µ

j j j jq t q q q q C Cj
j

b g b g b gb g a f b g1 2 11 2 2
1 2 2

K K , * , (38)
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with C being the matrix of the charge conjugation in the 2j + 1- dimension representation
(cf. [14]). The tensor t is defined in a following manner:

• t j
′σ σ

µ µ µ1 2 2K   is a 2j + 1 matrix with σ, σ' = + − −j j j j, , . ; ,1 1 2 2K Kµ µ µ  = 0, 1, 2, 3;

• t is symmetric in all µ’s;

• t is traceless in all µ’s, i.e., g t j
µ µ σ σ

µ µ µ
1 2

1 2 2
′

K  and with all permutations of upper indices;

• t is a tensor under Lorentz transformations,
D t D tj jj

j

j jb g b gΛ Λ Λ Λµ µ µ
ν
µ

ν
µ ν ν ν1 2 2

1
1

2

2 1 2 2K KK†= , (39a)

D t D tj jj
j

j jb g b gΛ Λ Λ Λµ µ µ
ν
µ

ν
µ ν ν ν1 2 2

1
1

2

2 1 2 2K KK†= (39b).
For instance, in the j = 1 case t00 = 1, t0i = ti0 = Ji and tij = {Ji, Jj} – δij, with Ji being the
j = 1 spin matrices and the metric gµν = diag (–1,1,1,1) being used. Furthermore, for
this representation

t tj jµ µ µ µ µ µ1 2 2 1 2 2K K= ± , (40)
the sign being +1 or –1 according to whether the µ’s contain altogether an even or an
odd number of space-like indices.
The Feynman diagram technique has been built and some properties with respect to

discrete symmetry operations have been studied. The propagator used in the Feynman
diagram technique is found not to be the propagator arising from the Wick theorem be-
cause of extra terms proportional to equal-time δ functions and their derivatives appear-
ing if one uses the time-ordering product of field operators T x yψ ψα βa f b gn s 0

. The co-

variant propagator is defined

S x y im M i
x y ip x y

y x ip y x
m M i x y

j

j C
αβ αβ

αβ

π ω
θ
θ− = − ∂

− ⋅ − +
+ − ⋅ −
L
N
MM

O
Q
PP

= − − ∂ −

− −

−
zb g a f b g b g

b g b gn s
b g b gn s
b g b g

2 23 2

3

2

d p
p

exp
exp
∆

, (41)

where

M p
m p

p m

j

jb g b g
b g=

F
HG

I
KJ

2

2
Π

Π
, (42)

and ∆C(x) is the covariant j = 0 propagator.
For massless particles the Weinberg theorem about connections between the helicity

of a particle and the representation of the group (A,B) which the corresponding field
transforms on has been proved. It says:

“A massless particle operator a(p, λ) of helicity λ can only be used to construct fields
which transform according to representations (A, B), such that B – A = λ. For in-
stance, a left-circularly polarized photon with λ = –1 can be associated with (1,0),
( 3 2 ,½ ), (2,1)…  fields, but not with the vector potential, (½ ,½ )… [It is not the case
of a massive particle.] A field can be constructed out of 2j + 1 operators a(p, σ) for
any representation (A, B) that “contains” j, such that j = A + B, or A + B – 1… or
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|A – B|, [e.g., a j = 1 particle massive] field could be a four-vector (½ ,½ )…[i.e.,
built out of the vector potential ].”

In subsequent papers Weinberg showed that it is possible to construct fields trans-
formed on other representations of the Lorentz group but unlikely can be considered as
fundamental ones. The prescription for constructing the fields have been given in ref.
[19c,p.1895].

“Any irreducible field ψ (A,B) for a particle of spin j may be constructed by applying a
suitable differential operator of order 2B to the field ψ (j,0), provided that A, B, and j
satisfy the triangle inequality |A – B | = j = A + B.”

For example, from the self-dual antisymmetric tensor Fµν the (½ ,½ ) field ∂µFµν, the (0,1)
field εµνλρ∂λ∂σFρσ have been constructed. Moreover, various invariant-type interactions
have been tabulated [19b,p.B890] and [19c,Section III]. While one can also use fields from
different representations of the Lorentz group to obtain some physical predictions, in my
opinion, such a wisdom could lead us to certain mathematical inconsistencies (like the
indefinite metric problem and the subtraction of infinities [4]). The applicability of the
procedure mentioned above to massless states should still be analyzed in detail.

Finally, in another paper [66c] Weinberg wrote:
“Tensor fields cannot by themselves be used to construct the interaction H'(t)…  The
potentials are not tensor fields…  It is for this reason that some field theorists have
been led to introduce fictitious photons and gravitons of helicity other than ±j, as
well as the indefinite metric that must accompany them. Preferring to avoid such
unphysical monstrosities, we must ask now what sort of coupling we can give our
nontensor potentials without losing the Lorentz invariance of the S matrix?…
Those in which the potential is coupled to a conserved current.”

Thus, he tried to provide some basis to the gauge models from the Lorentz invariance. In
the recent book [69] he slightly changed his views:

“Interactions in such a theory [constructed from fµν and its derivatives] will have a
rapid fall-off at large distances, faster than the usual inverse-square law. This is
perfectly possible, but…  theories that use vector fields for massless spin one particles
represent a more general class of theories… ”

My opinion is: all reliable theories must have well-defined massless limit and be in ac-
cordance with the Weinberg theorem. While many recipes were developed to handle
with interactions mediated by virtual particles described by the 4-vector potential, the
questions, which theories “are actually realized in nature” and which is the more general
theory, remain to be opened.

We have reached this conclusion on the basis of our development of the Weinberg
theory [19,66] and its reformulation by A. Sankaranarayanan [70];†† of the Majorana con-

                                                       
†† Unfortunately, the author of the cited work did not realized in 1965 himself that his equation describes parti-

cles with different physical properties compared with the initial Weinberg formulation.
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cept of the neutrality [71] and its reformulation by J. A. McLennan and K. M. Case [72];
and after reading the important work of B. Nigam and L. Foldy [73] and useful sugges-
tions of the referee [11] of the work [14b]. Here we are not going to discuss our recent
work in detail and only list some important results:

• It was proposed another equation in the (1,0) ⊕  (0,1) representation space [70]:

γ ψµν µ νp p
i t

E
m+

∂∂L
NMM

O
QPP

=b g 2 0 . (43)

In such a framework a boson and its antiboson have opposite intrinsic parities [14]. The
conclusion was also reached in the Fock space. The essential feature in deriving the
equation (ref. [70]) in ref. [14] was the Ryder-Burgard relation in the form φR = ±φL.
The presented theory [14b] is the first explicit example of the theory of the Bargmann-
Wightman-Wigner type [9b].

• The concept of the complex (1,0) ⊕  (0,1) fields as parts of the degenerate doublet was
proposed (ref. [60] and private communication from D. V. Ahluwalia). The represen-
tation is spanned by the two six-component functions in the coordinate space (e.g., ψ 1

and γ5ψ 1, or Fµν and ~F µν ). The mapping between the antisymmetric tensor and Wein-
berg formulations has been found. Properties of the field functions with respect to
P ≡ γ44 operation have been studied. The dynamical invariants for the Weinberg field
[60] and for the antisymmetric tensor field [46] have been obtained.

• The boson-boson interaction amplitude appears to be very similar [74] to the fermion-
fermion amplitude in the second order of the Feynman perturbation theory if one
works in the Lobachevsky momentum space. The only difference is that the denomi-
nator in the former has to be changed: 1 1 22

r
∆ ∆→ −m moa f . The spin structure of

the numerator remains to be unchanged. ( ∆ ∆o ,
r

) is the 4-vector of the momentum
transfer in the Lobachevsky space, see, e.g., ref. [75].

• The Majorana-Oppenheimer formulation [see equations (5a,b)] has been generalized
to the massive field case [76] by using some ideas of the paper [77].

• The relativistic covariance of the B- cyclic relations has been proven [78].

• In the (½ ,0) ⊕  (0,½ ) representation space the self/anti-self charge conjugate spinors
λS,A(pµ) [and related to them ρS,A(pµ)spinors] have been introduced [16]. One can note
interesting features of these spinors: they are not eigenspinors of the parity operator;
they are not eigenspinors of the helicity operator h of the (½ ,0) ⊕  (0,½ ) representation
(but, the new operator –γ5h of the chiral helicity was introduced); for massless particles
λA

S A,  identically vanish; they form bi-orthonormal set in the mathematical sense (see
formula (41) in [16]). In the (1,0) ⊕  (0,1) representation it is impossible to construct
self/anti-self charge conjugate objects in the similar way. But, the eigenvectors of the
Γ5 1S c  operator have been introduced there [16].
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• The Majorana representation (MR) and the corresponding unitary matrix ψ M = Uψ W

of the transfer to the MR have been defined [79]. In this representation λS and ρA keep
to be pure real and λA and ρS keep to be pure imaginary for both spin-½  and spin-1 case
(cf. [71]).

• On the basis of the generalization of the Ryder-Burgard relation (see the formula (11)
in [17b]) the dynamical equations in the covariant form have been derived in both the
(½ ,0) ⊕  (0,½ ) and (1,0) ⊕  (0,1) representation spaces [17]. The explicit form of these
“MAD” equations in the j = ½  case is

i x m x i x m xS A A Sγ λ ρ γ ρ λµ
µ

µ
µ∂ − = ∂ − =a f a f a f a f0 0, , (44a)

i x m x i x m xA S S Aγ λ ρ γ ρ λµ
µ

µ
µ∂ + = ∂ + =a f a f a f a f0 0, . (44b)

A fermion and its antifermion appear to be able to carry the same intrinsic parities [80]
in the framework of the similar construction in the Fock space. So, the Bargmann-
Wightman-Wigner-type quantum field theory [9b] can be realized in the (½ ,0) ⊕  (0,½ )
representation space too.

• Gauge transformations for the λS,A and ρS,A spinors take the form, ref. [17b]
′→ −λ α γ α λcos sini x5c h a f , (45a)

′→ +ρ α γ α ρcos sini x5c h a f . (45b)
Thus, we have automatically parity-violating currents.

• It is interesting to note that oscillations such as λ λη η−
A S t Eta f b g~ sin2 h  are possible.

This induces a lot of speculations on the foundations of quantum mechanics.

• Constructs presented in refs. [81,82] seem to have similar physical content comparing
with the Majorana-Ahluwalia construct. The authors of [82] also proposed the doubling
of the Fock space; investigated field functions which are not the eigenvectors of the
parity operator, while are the eigenvectors of the operator of charge conjugation (de-
fined in a different way). They also regarded the pseudoscalar charge. At last, they ar-
gued that “The usual ‘CP-mirror’ symmetry of the weak interaction should quite gener-
ally be re-interpretable as a pure P-mirror one. The result is that now the P-mirror image
of the actual process n p e→ + + ν  should just be identified with the actual antiprocess
n p e→ + + ν .

• Finally, in the papers [83] it was shown that the solutions of the Maxwell equations
and the Klein-Gordon equation (and presumably other relativistic equations) are not
necessarily required to be plane waves.
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