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In the first part of this paper we review several formalisms which give
alternative ways for describing the light. They are: the formalism ‘baroque’
and the Majorana-Oppenheimer form of electrodynamics, the Sachs’ theory
of Elementary Matter, the Dirac-Fock-Podol’sky model, its development by
Staruszkiewicz, the Evans-Vigier B(3) field, the theory with an invariant evo-
lution parameter by Horwitz, the analysis of the action-at-a-distance concept,
presented recently by Chubykalo and Smirnov-Rueda, and the analysis of the
claimed ‘longitudinality’ of the antisymmetric tensor field after quantization.
The second part is devoted to the discussion of the Weinberg formalism and
its recent development by Ahluwalia and myself. Connections between these
models and possible significance of longitudinal modes are also discussed.

I. HISTORICAL NOTES

The Maxwell’s electromagnetic theory perfectly describes many observed phenomena.
The accuracy in predictions of the quantum electrodynamics is without precedents [23].
They are widely accepted as the only tools to deal with electromagnetic phenomena. Other
modern field theories have been built on the basis of the similar principles to deal with weak,
strong and gravitational interactions. Nevertheless, many scientists felt some unsatisfactions
with both these theories since almost their appearance, see, e.g., ref. [79] and refs. [20,48,62].
In the preface to the Dover edition of his book [10] A. Barut writes (1979): “Electrodynamics
and the classical theory of fields remain very much alive and continue to be the source of
inspiration for much of the modern research work in new physical theories” and in the
preface to the first edition he said about shortcomings in the conventional quantum field
theory. They are well known. Furthermore, in spite of much expectation in the sixties and
the seventies after the proposal of the Glashow-Salam-Weinberg model and the quantum
chromodynamics, elaboration of the unified field theory, based on the gauge principle, has
come across with serious difficulties. In the end of the nineties there are a lot of experiments
in our disposition, which do not find satisfactory explanations on the basis of the standard
model. First of all, one can single out the following ones: the LANL neutrino oscillation
experiment; the atmospheric neutrino anomaly, the solar neutrino puzzle (all of the above-
mentioned imply existence of the neutrino mass); the tensor coupling in decays of π− and
K+ mesons; the dark matter problem; the observed periodicity of the number distribution of

∗An invited paper for “Enigmatic Photon. Vol. IV”, the series “Fundamental Theories of Physics”,
Kluwer Academic Publishers, Dordrecht, 1997.

1



galaxies, and the ‘spin crisis’ in QCD. Furthermore, experiments and observations concerning
with superluminal phenomena: negative mass-square neutrinos, tunnelling photons, ‘X-
shaped waves’ and superluminal expansions in quasars and in galactic objects.

In the meantime almost since the proposal of the Lorentz-Poincaré-Einstein theory of
relativity [33] and the mathematical formalism of the Poincarè group [78] several physicists
(including A. Einstein, W. Pauli and M. Sachs) thought that in order to build a reliable
theory based on relativistic ideas one must utilize the irreducible representations of the
underlying symmetry group — the Poincarè group of special relativity, i.e. to build it on
the first principles. Considerable efforts in this direction have been recently undertaken by
M. Evans. Since the prediction and the discovery of an additional phase-free variable, the
spin, which all the observed fundamental particles have, to propose its classical analogue
and to relate it with the known fields and/or space-time structures (perhaps, in higher
dimensions) was one of the important tasks of physicists. We can say now that several
interesting ideas have been proposed in the papers and books of M. Evans (see below), while
further rigorous researches are required. In the end of this introductory part we note that
while the ‘Ultimate’ Theory has not yet been constructed the series “Enigmatic Photon”
as well as recent papers of D. V. Ahluwalia, E. Recami and several other works provide a
sufficiently clear way to this goal.

We deal below with the historical development, with the ideas which can be useful to
proceed further.

E = 0 solutions. First of all, I would like to mention the problem with existence of
‘acausal’ solutions of relativistic wave equations of the first order. In ref. [1] and then in [2]
it was found that massless equations of the form1

(J · p − p011)φ
R
(p) = 0 , (1a)

(J · p + p011)φ
L
(p) = 0 (1b)

have acausal dispersion relations, see Table 2 in [1]. In the case of the spin j = 1 this
manifests in existence of the solution with the energy E = 0. Some time ago we learned
that the same problem has been discussed by J. R. Oppenheimer [61], S. Weinberg [75b]
and E. Gianetto [51c]. For instance, Weinberg on p. 888 indicated that “for j = 1/2 [the
equations (1a,1b), cf. refs. [1] and [2]] are the Weyl equations for the left- and right-handed
neutrino fields, while for j = 1 they are just Maxwell’s free-space equations for left- and
right-circularly polarized radiation:

∇× [E− iB] + i(∂/∂t)[E− iB] = 0 , (2a)

∇× [E + iB]− i(∂/∂t)[E + iB] = 0 . (2b)

The fact that these field equations are of first order for any spin seems to me to be of no great
significance [my emphasis], since in the case of massive particles we can get along perfectly
well with (2j+1)− component fields which satisfy only the Klein-Gordon equation.” This is
obviously a remarkable and bold conclusion of the great physicist. In the rest of the paper
we try to understand it.

Oppenheimer concerns with the E = 0 solution on the pages 729, 730, 733 (see also
the discussion on p. 735) and indicated at its connection with the electrostatic solutions

1Here and below in this historical section we try to keep the notation and the metric of original
papers.
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of Maxwell’s equations. “In the absence of charges there may be no such field.” This is
contradictory: free-space Maxwell’s equations do not contain terms ρe or ρm, the charge
densities, but dispersion relations still tell us about the solution E = 0. Furthermore,
the condition of the free-divergence of the corresponding field does not always reduce the
solutions with E = 0 to the trivial ones. He deals further with the matters of relativistic
invariance of the matrix equation (p. 733) and suggests that the components of ψ (φ

R,L

in the notation of [1,2]) transform under a pure Lorentz transformations like the space
components of a covariant 4-vector!? This induces him to extend the matrices and the
wave functions to include the fourth component. Similar formulation has been developed
by Majorana [51]. If so, it would be already difficult to consider φ

R,L
as Helmoltz’ bivectors

because they have different laws for Lorentz transformations. We stand at the question:
what does the 4-component function (and its space components) corresponds to? Finally,
he indicated (p. 728) that cτ , the angular momentum matrices, and the corresponding
density-flux vector may “play in some respects the part of the velocity”, with eigenvalues
0,±c. In my opinion, the formula (5) of the paper [61] may have some relations with the
discussion of the convection displacement current in [17].

Finally, M. Moshinsky and A. Del Sol found the solution of the similar nature in a two-
body relativistic problem [55]. Of course, it is connected with earlier considerations, e.g., in
the quasipotential approach. In order to try to understand the physical sense of the E = 0
solutions and of the corresponding field components let us consider other generalizations of
the Maxwell’s formalism.

The formalism ‘baroque’. In this formalism proposed in the fifties by K. Imaeda [43] and
T. Ohmura [60], who intended to solve the problem of the stability of an electron, additional
scalar and pseudo-scalar fields are introduced in the Maxwell’s theory. Monopoles and
magnetic currents are also present in this theory. The equations become:

rot H− ∂E/∂x0 = i− grad e , (3a)

rot E + ∂H/∂x0 = j + grad h , (3b)

div E = ρ+ ∂e/∂x0 , (3c)

div H = −σ + ∂h/∂x0 . (3d)

“Each of E and H is separated into two parts E(1) + E(2) and H(1) + H(2): one is the
solution of the equations with j, σ, h zero, and other is the solution of the equations with
i, ρ, e zero.” Furthermore, T. Ohmura indicated at existence of longitudinal photons in her
model: “It will be interesting to test experimentally whether the γ-ray keeps on its transverse
property even in the high energy region as derived from the Maxwell theory or it does not
as predicted from our hypothesis.” In fact, the equations (3a-3d) can be written in a matrix
notation, what leads to the known Majorana-Oppenheimer formalism for the (0, 0) ⊕ (1, 0)
(or (0, 0)⊕ (0, 1)) representation of the Poincarè group [51,61], see also [22].2 In a form with
the Majorana-Oppenheimer matrices

ρ1 =


0 −1 0 0
−1 0 0 0
0 0 0 −i
0 0 i 0

 , ρ2 =


0 0 −1 0
0 0 0 i
−1 0 0 0
0 −i 0 0

 , (4a)

2The matters of the relativistic covariance of this type of equations will be regarded in a separate
paper. The reader will find discussion there about relations between these representations and the
4-vector (1/2, 1/2) representation.
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ρ3 =


0 0 0 −1
0 0 −i 0
0 i 0 0
−1 0 0 0

 , ρ0 = 114×4 , (4b)

and ρ0 ≡ ρ0 , ρi ≡ −ρi, the equations without an explicit mass term are written

(ρµ∂µ)ψ1(x) = φ1(x) , (5a)

(ρµ∂µ)ψ2(x) = φ2(x) . (5b)

The φi are the “quadri-vectors” of the sources

φ1 =
(−ρ+ iσ

ij− i

)
, φ2 =

(
ρ+ iσ
−ij− i

)
. (6)

The field functions are

ψ1(pµ) = Cψ∗2(pµ) =


−i(E0 + iB0)
E1 + iB1

E2 + iB2

E3 + iB3

 , ψ2(pµ) = Cψ∗1(pµ) =


−i(E0 − iB0)
E1 − iB1

E2 − iB2

E3 − iB3

 , (7)

where E0 ≡ −h, B0 ≡ e and

C = C−1 =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , CαµC−1 = αµ ∗ . (8)

When sources are switched off the equations have relativistic dispersion relations E = ±|p|
only. In ref. [51] zero-components of ψ have been connected with π0 = ∂µAµ, the zero-
component of the canonically conjugate momentum to the field Aµ. H. E. Moses developed
the Oppenheimer’s idea [61] that the longitudinal part of the electromagnetic field is con-
nected somehow with the sources which created it [54, Eq.(5.21)]. Moreover, it was men-
tioned in this reference that even after the switch-off of the sources, the localized field can
possess the longitudinal component (Example 2). Then, he made a convention which, in my
opinion, is required to give more rigorous scientific basis: “. . .ψA is not suitable for a final
field because it is not purely transverse. Hence we shall subtract the part whose divergence
is not zero.”

Finally, one should mention ref. [50]; the proposed formalism is connected with the
formalism of the previously cited works (and with the massive Proca theory) . Two of
Maxwell’s equations remain unchanged, but one has additional terms in two other ones:

∇×H− ∂D/∂t = J− (1/µ0l
2)A , (9a)

∇ ·D = ρ− (ε0/l
2)V , (9b)

where l is of the dimensions length and is suggested by Lyttleton and Bondi to be of the
order of the radius of the Universe. A and V are the vector and scalar potentials, which
put back into two Maxwell’s equations for strengths. So, these additional terms contain
information about possible effects of the photon mass. This was applied to explain the
expansion of the Universe. The Watson’s generalization, also discussed in [50b], is based on
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the introduction of the additional gradient current (as in Eqs. (3a,3c)) and, in fact, repeats
in essence the Majorana-Oppenheimer and Imaeda-Ohmura formulations. On a scale much
smaller than a radius of the Universe, both formulations were shown by Chambers to be
equivalent. The difference obtained is of order l−2 at the most. In fact, both formulations
were noted by Chambers to be able to describe local creation of the charge.3

The theory of Elementary Matter. The formalism proposed by M. Sachs [64,65] is on the
basis of the consideration of spinorial functions composed of 3-vector components:

φ1 =
(

G3

G1 + iG2

)
, φ2 =

(
G1 − iG2

−G3

)
, (10)

where Gk = Hk + iEk (k = 1, 2, 3). 2-component functions of the currents are constructed
in the following way:

Υ1 = −4πi
(
ρ+ j3
j1 + ij2

)
, Υ2 = −4πi

(
j1 − ij2
ρ− j3

)
. (11)

The dynamical equation in this formalism reads

σµ∂µφα = Υα . (12)

“. . . Eq. (12) is not equivalent to the less general form of Maxwell’s equations. That is
to say the spinor equations (12) are not merely a rewriting of the vector form of the field
equations, they are a true generalization in the sense of transcending the predictions of the
older form while also agreeing with all of the correct predictions of the latter . . . Eq. (12)
may be rewritten in the form of four conservation equations ∂µ(φ†ασ

µφβ) = φ†αΥβ + Υ†αφβ
[which] entails eight real conservation laws.” For instance, these equations could serve as
a basis for describing parity-violating interactions [64a], and can account for the spin-spin
interaction as well from the beginning [64d,p.934]. The formalism was applied to explain
several puzzles in neutrino physics. The connection with the Pauli Exclusion Principle was
revealed. The theory, when the interaction (‘matter field labeling’) is included, is essentially
bi-local.4 “What was discovered in this research program, applied to the particle-antiparticle
pair, was that an exact solution for the coupled field equations for the pair, in its rest frame,
gives rise (from Noether’s theorem) to a prediction of null energy, momentum and angular
momentum, when it is in this particular bound state [65].” Later [65] this type of equations
was written in the quaternion form with the continuous function m = λh̄/c identified with
the inertial mass. Thus, an extension of the model to the general relativity case was proposed.
Physical consequences of the theory are: a) the formalism predicts while small but non-zero
masses and the infinite spectrum of neutrinos; b) the Planck spectral distribution of black
body radiation follows; c) the hydrogen spectrum (including the Lamb shift) was deduced;
d) grounds for the charge quantization were proposed; e) the lifetime of the muon state was
predicted; f) the electron-muon mass splitting was discussed, “the difference in the mass

3The question of the integral conservation of the charge over the volume still deserves elaboration,
the question of possibility to observe such a type of non-conservation as well. These questions may
be connected with the boundary conditions on the sphere of the radius l.

4The hypothesis of the non-local nature of the charge has been first proposed by J. Frenkel (private
communication from A. Chubykalo).
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eigenvalues of a doublet depends on the alteration of the geometry of space-time in the
vicinity of excited pairs of the “physical vacuum” [“a degenerate gas of spin-zero objects”,
longitudinal and scalar photons, indeed – my comment] — leading, in turn, to a dependence
of the ratio of mass eigenvalues on the fine-structure constant”. That was impressive work
and these are impressive results!

Quantum mechanics of the phase. A. Staruszkiewicz [67,68] considers the Lagrangian
and the action of a potential formulation for the electromagnetic field, which include a
longitudinal part:

S = − 1

16π

∫
d4x

{
FµνF

µν + 2γ
(
∂µAµ +

1

e
S
)2
}

. (13)

S is a scalar field called the phase. As a matter of fact, this formulation was shown to be a
development of the Dirac-Fock-Podol’sky model in which the current is a gradient of some
scalar field [36]:

4πjν = −∂νF . (14)

The Maxwell’s equations are written:

∂λFµν + ∂µFνλ + ∂νFλµ = 0 , (15a)

∂µFµν + ∂νF = 0 . (15b)

We see again a gradient current and, therefore, the Dirac-Fock-Podol’sky model is a simpli-
fied version (seems, without monopoles) of the more general Majorana-Oppenheimer theory.
Staruszkiewicz put forth the questions [68], see also [60b] and [37]: “Is it possible to have
a system, whose motion is determined completely by the charge conservation law alone? Is
it possible to have a pure charge not attached to a nonelectromagnetic piece of matter?”
and answering came to the conclusion “that the Maxwell electrodynamics of a gradient cur-
rent is a closed dynamical system.” The interpretation of a scalar field as a phase of the
expansion motion of a charge under repulsive electromagnetic forces was proposed. “They
[the Dirac-Fock-Podol’sky equations] describe a charge let loose by removal of the Poincarè
stresses.” The phase was then related with the vector potential by means of [68e,p.902] 5

S(x) = −e
∫
Aµ(x− y)jµ(y)d4y , ∂µj

µ(y) = δ(4)(y) . (16)

The operator of a number of zero-frequency photons was studied. The total charge of the
system, found on the basis of the Nöther theorem, was connected with the change of the
phase between the positive and the negative time-like infinity: Q = − e

4π
[S(+∞)− S(−∞)].

It was shown that eiS, having a Bose-Einstein statistics, can serve itself as a creation oper-

ator: QeiS|0 >=
[
Q, eiS

]
|0 >= −e eiS|0 >. Questions of fixing the factor γ by appropriate

physical conditions were also answered. Finally, the Coulomb field was decomposed into
irreducible unitary representations of the proper orthochronous Lorentz group [69]. Both
representations of the main series and the supplementary series were regarded. In my opin-
ion, these researches can help to understand the nature of the charge and of the fine structure
constant.

5The formula (16) is reminiscent to the Barut self-field electrodynamics [9]. This should be
investigated by taking 4-divergence of the Barut’s anzatz.
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Invariant evolution parameter. The theory of electromagnetic field with an invariant
evolution parameter (τ , the Newtonian time) has been developed by L. P. Horwitz [40–42].
It is a development of the Stueckelberg formalism [70] and I consider this theory as an
important step to understanding the nature of our space-time. The Stueckelberg equation:

i
∂ψτ(x)

∂τ
= Kψτ(x) (17)

is deduced on the basis of his worldline classical relativistic mechanics with subsequent
setting up the covariant commutation relations [xµ, pν ] = igµν . Remarkably that he proposed
a classical analogue of an antiparticle (which, in fact, has been later used by R. Feynman)
and of annihilation processes. As noted by Horwitz if one insists on the U(1) gauge invariance
of the theory based on the Stueckelberg-Schrödinger equation (17) one arrives at 5-potential
electrodynamics (i∂τ → i∂τ + e0a5) where the equation, which are deduced by means of the
variational principle, reads

∂βf
αβ = jα (18)

(α, β = 1 . . . 5), with an additional fifth component of the conserved current ρ = |ψτ(x)|2.
The underlying symmetry of the theory can be O(3, 2) or O(4, 1) “depending on the choice
of metric for the raising and lowering of the fifth (τ ) index [40]”. For Minkowski-space
components the equation (18) is reduced to ∂νfµν + ∂τfµ5 = jµ. The Maxwell’s theory is
recovered after integrating over τ from −∞ to ∞, with appropriate asymptotic conditions.
The formalism has been applied mainly in the study of the many-body problem and in the
measurement theory, namely, bound states (the hydrogen atom), the scattering problem,
the calculation of the selection rules and amplitudes for radiative decay, a covariant Zeeman
effect, the Landau-Peierls inequality. Two crucial experiments which may check validity and
may distinguish the theory from ordinary approaches have also been proposed [42, p.15].

Furthermore, one should mention that in the framework of the special relativity version of
the Feynman-Dyson proof of the Maxwell’s equations [32] S. Tanimura came to unexpected
conclusions [72] which are related with the formulation defended by L. Horwitz. Trying to
prove the Maxwell’s formalism S. Tanimura arrived at the conclusion about a theoretical
possibility of its generalization. According to his consideration the 4-force acting on a
particle in the electromagnetic field must be expressed in terms of

F µ(x, ẋ) = Gµ(x)+ < F µ
ν(x) ẋν > , (19)

where the symbol < . . . > refers to the Weyl-ordering prescription. The fields Gµ(x) ,
F µ

ν(x) satisfy6

∂µGν − ∂νGµ = 0 , (20a)

∂µFνρ + ∂νFρµ + ∂ρFµν = 0 . (20b)

This implies that apart from the 4-vector potential Fµν = ∂µAν − ∂νAµ there exists a
scalar field φ(x) such that Gµ = ∂µφ. One may try to compare this result with the fact of
existence of additional scalar field components in the Majorana-Oppenheimer formulation
of electrodynamics and with the Stueckelberg-Horwitz theory. The latter has been done

6Of course, one can repeat the Tanimura proof for dual fields and obtain two additional equations.
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by Prof. Horwitz himself [40d] by the identification Fµ5 = −F5µ = Gµ and the explicit
demonstration that in the off-shell theory the Tanimura’s equations reduce to

∂µFνρ + ∂νFρσ + ∂ρFµν = 0 , (21a)

∂µGν − ∂νGµ +
∂Fµν
∂τ

= 0 , (21b)

mẍµ = Gµ(τ, x) + F µν(τ, x)ẋν . (21c)

Finally, among theories with additional parameters one should mention the quantum
field model built in the de Sitter momentum space p2

5 − p2
4 − p2

3 − p2
2 − p2

1 = M2, ref. [46].
The parameter M is considered as a new physical constant, the fundamental mass. In
a configurational space defined on the basis of the Shapiro transformations the equations
become the finite-difference equations thus leading to the lattice structure of the space. In
the low-energy limit (M →∞) the theory is equivalent to the standard one.

Action-at-a-distance. In the paper [16] A. E. Chubykalo and R. Smirnov-Rueda revealed
on the basis of the analysis of the Cauchy problem of the D’Alembert and the Poisson equa-
tions that one can revive the concept of the instantaneous action-at-a-distance in classical
electrodynamics in order to remove some interpretational misunderstandings of the descrip-
tion by means of the Liénard-Wiechert potentials. The essential feature of the formalism is
in introduction of two types of field functions, with the explicit and implicit dependencies on
time. The energy of “longitudinal modes” in this formulation cannot be stored locally in the
space, the spread velocity may be whatever and so, they claimed, one has also E = 0. The
new convection displacement current was proposed in [17] on the basis of the development
of this wisdom. It has a form jdisp = − 1

4π
(v ·∇)E. This is a resurrection of the Hertz’

ideas (later these ideas have been defended by T. E. Phipps, jr.) to replace the partial
derivative by the total derivative in the Maxwell’s equations. In my opinion, one can also
reveal connections with the Majorana-Oppenheimer formulation following to the analysis of
ref. [61, p.728].

F. Belinfante [11a] appears to come even earlier to the Sachs’ idea about the “physical
vacuum” as pairs of some particles from a very different viewpoint. In his formulation of
the quantum-electrodynamic perturbation theory zero-order approximation is determined
in which scalar and longitudinal photons are present in pairs. He (with D. Caplan) also
considered [11b] the Coulomb problem in the frameworks of the quantum electrodynamics
and proved that the signal can be transmitted with the velocity greater than c. So, this
old work appears to be in accordance with recent experimental data (particularly, with the
claims of G. Nimtz et al. about a wave packet propagating faster than c through a barrier,
which was used “to transmit Mozart’s Symphony No. 40 through a tunnel of 114mm length
at a speed of 4.7c”). As indicated by E. Recami in a private communication the E = 0
solutions can be put in correspondence to a tachyon of the infinite velocity.

Evans-Vigier B(3) field. In a recent series of remarkable papers (in FPL, FP, Physica A
and B, Nuovo Cimento B) and books M. Evans and J.-P. Vigier indicated at the possibility of
consideration of the longitudinal B(3) field for describing many electromagnetic phenomena
and in cosmological models as well [34]. It is connected with transversal modes

B(1) =
B(0)

√
2

(i i + j) eiφ , (22a)

B(2) =
B(0)

√
2

(−i i + j) e−iφ , (22b)

φ = ωt− k · r, by means of the cyclic relations
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B(1) ×B(2) = iB(0)B(3)∗ , (23a)

B(2) ×B(3) = iB(0)B(1)∗ , (23b)

B(3) ×B(1) = iB(0)B(2)∗ . (23c)

The indices (1), (2), (3) denote vectors which are connected by the relations of the orths of
the circular basis. Thus, the longitudinal field B(3) presents itself a third component of the
vector in some isovector space. “The conventional O(2) gauge geometry is replaced by a
non-Abelian O(3) gauge geometry and the Maxwell equations are thereby generalized” in
this approach. Furthermore, some success in the problem of the unification of gravitation
and electromagnetism has been achieved in recent papers by M. Evans. It was pointed out
by several authors, e.g., [35,29] that this field is the simplest and most natural (classical)
representation of a particle spin, the additional phase-free discrete variable discussed by
Wigner [78]. The consideration by Y. S. Kim et al., see ref. [38a,formula (14)], ensures that
the problem of physical significance of Evans-Vigier-type longitudinal modes is related with
the problem of the normalization and of existence of the mass of a particle transformed on
the (1, 0) ⊕ (0, 1) representation of the Poincarè group. Considering explicit forms of the
(1, 0)⊕(0, 1) “bispinors” in the light-front formulation [21] of the quantum field theory of this
representation (the Weinberg-Soper formalism) D. V. Ahluwalia and M. Sawicki showed [4]
that in the massless limit one has only two non-vanishing Dirac-like solutions. The “bispinor”
corresponding to the longitudinal solution is directly proportional to the mass of the particle.
So, the massless limit of this theory, the relevance of the E(2) group to describing physical
phenomena and the problem of what is mass deserve further consideration. We shall still
come back to these problems in the fourth Sections.

Antisymmetric tensor fields. To my knowledge researches of antisymmetric tensor fields
in the quantum theory began from the paper by V. I. Ogievetskĭı and I. V. Polubarinov [58].
They claimed that the antisymmetric tensor field (notoph in the terminology used, which
I find quite suitable) can be longitudinal in the quantum theory, owing to the new gauge
invariance

Fµν → Fµν + ∂µΛν − ∂νΛµ (24)

and applications of the supplementary conditions. The result by Ogievetskĭı and Polubarinov
has been repeated by K. Hayashi [39], M. Kalb and P. Ramond [47] and T. E. Clark et al. [18].
The Lagrangian (Fk = iεkjmnFjm,n)

LH =
1

8
FkFk = −1

4
(∂µFνα)(∂µFνα) +

1

2
(∂µFνα)(∂νFµα) (25)

after the application of the Fermi method mutatis mutandis (comparing with the case of
the 4-vector potential field) yields the spin dynamical invariant to be equal to zero. While
several authors insisted on the transversality of the antisymmetric tensor field and the neces-
sity of the gauge-independent consideration [15,71,14] this interpretation (‘longitudinality’)
perpetually has become wide-accepted. In refs. [6,7] an antisymmetric tensor matter field
was considered to prove that it is also longitudinal, but has two degrees of freedom. Un-
fortunately, the authors of the cited work regarded only a massless real field and did not
take into account the physical reality of the dual field corresponding to an antiparticle. But,
what is important, L. Avdeev and M. Chizhov noted [7] that in such a framework there exist
δ′ transversal solutions, which cannot be interpreted as relativistic particles.

If an antisymmetric tensor field would be pure longitudinal, it appears failure to under-
stand, why in the classical electromagnetism we are convinced that an antisymmetric tensor
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field is transversal. Does this signifies one must abandon the Correspondence Principle?
Moreover, this result contradicts with the Weinberg theorem B − A = λ, ref. [75b]. This
situation has been later analyzed in refs. [24,35,26,29,30] and it was found that indeed the
‘longitudinal nature’ of antisymmetric tensor fields is connected with the application of the
generalized Lorentz condition to the quantum states: ∂µF µν|Ψ >= 0. Such a procedure leads
also (like in the case of the treatment of the 4-vector potential field without proper regard-
ing the phase field) to the problem of the indefinite metric which was noted by Gupta and
Bleuler. As we shall see in the following Sections and as already obvious from methodological
viewpoints the grounds for regarding only particular cases can be doubted by the Lorentz
symmetry principles. Ignoring the phase field of Dirac-Fock-Podol’sky-Staruszkiewicz or
ignoring χ functions [28] related with the 4-current and, hence, with the non-zero value of
∂µF µν can put obstacles in the way of creation of the unified field theory and can embarrass
understanding the physical content dictated by the Relativity Theory.

II. THE WEINBERG FORMALISM

In the beginning of the sixties the 2(2j + 1)- component approach has been pro-
posed in order to construct a Lorentz-invariant interaction S-matrix from the first prin-
ciples [8,45,75,74,76,53,73]. The authors had thus some hopes on an adequate perturbation
calculus for processes including higher-spin particles which got available for physicists in the
sixties. The field theory in that time was considered by some persons to be in trouble.

The Weinberg anzatzen for the (j, 0) ⊕ (0, j) field theory are simple and obvi-
ous [75a,p.B1318]:
a) relativistic invariance

U [Λ, a]ψn(x)U−1[Λ, a] =
∑
m

Dnm[Λ−1]ψm(Λx+ a) , (26)

where Dnm[Λ] is the corresponding representation of Λ;
b) causality

[ψn(x), ψm(y)]± = 0 (27)

for (x − y) spacelike, which garantees the commutator of the Hamiltonian density
[H(x),H(y)] = 0, provided that H(x) contains an even number of fermion field factors.
The signs ± in (27) should be referred to fermion (boson) fields, respectively. The in-
teraction Hamiltonian H(x) is constructed out of some combination of the field operators
corresponding to the various-spin free particles, described by some H0, the free-particle part
of the Hamiltonian. Thus, the (j, 0) ⊕ (0, j) field

ψ(x) =
(
ϕ(x)
χ(x)

)
(28)

transforms according to (26), where

D(j)[Λ] =

(
D(j)[Λ] 0

0 D
(j)

[Λ]

)
, D(j)[Λ] = D

(j)
[Λ−1]† , D(j)[Λ]† = βD(j)[Λ−1]β , (29)

with

β =
(

0 11
11 0

)
, (30)
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and, hence, for pure Lorentz transformations (boosts)

D(j)[L(p)] = exp(−p̂ · J(j)θ) , (31a)

D
(j)

[L(p)] = exp(+p̂ · J(j)θ) , (31b)

with sinh θ ≡ |p|/m. Dynamical equations, which Weinberg proposed, are (Eqs. (7.17) and
(7.18) of the first paper [75]):

Π(−i∂)ϕ(x) = m2jχ(x) , (32a)

Π(−i∂)χ(x) = m2jϕ(x) . (32b)

They are rewritten into the form (Eq. (7.19) of [75a])[
γµ1µ2...µ2j∂µ1∂µ2 . . . ∂µ2j +m2j

]
ψ(x) = 0 , (33)

with the Barut-Muzinich-Williams matrices [8]

γµ1µ2...µ2j = −i2j
(

0 tµ1µ2...µ2j

t
µ1µ2...µ2j 0

)
. (34)

The following notation was used

Π(j)
σ′σ(q) ≡ (−1)2jt

µ1µ2...µ2j

σ′σ qµ1qµ2 . . . qµ2j , (35)

Π
(j)

σ′σ(q) ≡ (−1)2jt
µ1µ2...µ2j

σ′σ qµ1qµ2 . . . qµ2j , Π
(j) ∗

(q) = CΠ(j)C−1 , (36)

with C being a part of the matrix of the charge conjugation of the 2(2j + 1)- dimension
representation, in fact, the Wigner time-reversal operator. The tensor t is defined in a
following manner:

• t µ1µ2...µ2j

σ′σ is a 2j + 1 matrix with σ, σ′ = j, j − 1, . . .− j; µ1, µ2 . . . µ2j = 0, 1, 2, 3;

• t is symmetric in all µ’s;

• t is traceless in all µ’s, i.e., gµ1µ2t
µ1µ2...µ2j

σ′σ = 0, and with all permutations of upper
indices;

• t is a tensor under Lorentz transformations,

D(j)[Λ]t µ1µ2...µ2jD(j)[Λ]† = Λ µ1
ν1

Λ µ2
ν2

. . .Λ µ2j
ν2j

t ν1ν2...ν2j , (37a)

D
(j)

[Λ]t̄ µ1µ2...µ2jD
(j)

[Λ]† = Λ µ1
ν1

Λ µ2
ν2

. . .Λ µ2j
ν2j

t ν1ν2...ν2j . (37b)

For instance, in the j = 1 case t00 = 11, t0i = ti0 = Ji and tij = {Ji, Jj} − δij,
with Ji being the spin-1 matrices and the metric gµν = diag(−1, 1, 1, 1) being used.
Furthermore, for these representations

t
µ1µ2...µ2j = ±tµ1µ2...µ2j , (38)

the sign being +1 or −1 according to whether the µ’s contain altogether an even or
an odd number of space-like indices.
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The Feynman diagram technique has been built and some properties with respect to
discrete symmetry operations have been studied. The propagator used in the Feynman
diagram technique is found not to be the propagator arising from the Wick theorem because
of extra terms proportional to equal-time δ functions and their derivatives appearing if one

uses the time-ordering product of field operators < T
{
ψα(x)ψβ(y)

}
>0. The covariant

propagator is defined by

Sαβ(x− y) = (2π)−3m−2jMαβ(−i∂)
∫ d3p

2ω(p)
[θ(x− y) exp{ip · (x− y)}+

+ θ(y − x) exp{ip · (y − x)}] = −im−2jMαβ(−i∂)∆C(x− y) , (39)

where

M(p) =
(
m2j Π(p)
Π(p) m2j

)
, (40)

and ∆C(x) is the covariant j = 0 propagator.
Next, for massless particles the Weinberg theorem defines connections between the helic-

ity of a particle and the representation of the group (A,B), on which the corresponding field
transforms. It says: “A massless particle operator a(p, λ) of helicity λ can only be used to
construct fields which transform according to representations (A,B), such that B − A = λ.
For instance, a left-circularly polarized photon with λ = −1 can be associated with (1, 0),
(3

2
, 1

2
), (2, 1) . . . fields, but not with the vector potential, (1

2
, 1

2
). . . [It is not the case of a

massive particle.] A field can be constructed out of 2j + 1 operators a(p, σ) for any repre-
sentation (A,B) that “contains” j, such that j = A+B orA+B− 1 . . . or | A−B |, [e. g.,
a j = 1 particle ] field could be a four-vector (1

2
, 1

2
). . . [i.e., built out of the vector potential

].”
In subsequent papers Weinberg showed that it is possible to construct fields transformed

on other representations of the Lorentz group but, in my opinion, it is unlikely that these can
be considered as fundamental ones. The prescription for constructing fields have been given
in ref. [75c,p.1895]. “Any irreducible field ψ(A,B) for a particle of spin j may be constructed
by applying a suitable differential operator of order 2B to the field ψ(j,0), provided that A, B,
and j satisfy the triangle inequality |A−B| ≤ j ≤ A+B.” For example, from the self-dual
antisymmetric tensor F µν the (1/2, 1/2) field ∂µF µν , the (0, 1) field εµνλρ∂λ∂σF ρσ have been
constructed. Moreover, various invariant-type interactions have been tabulated [75b,p.B890]
and [75c,Section III]. While one can also use fields from different representations of the
Lorentz group to obtain some physical predictions, in my opinion, such a wisdom could
lead us to certain mathematical inconsistencies (like the indefinite metric problem and the
subtraction of infinities [20]). The applicability of the procedure mentioned above to massless
states should still be analyzed in detail.

Finally, we would like to cite a few paragraphs from other Weinberg’s works. In the paper
of 1965 Weinberg proposed his concept how to deal with several puzzles noted before [76c]:
“. . . Tensor fields cannot by themselves be used to construct the interaction H ′(t),7 because
the coefficients of the operators for creation or annihilation of particles of momentum p

7Recently, Prof. Weinberg slightly corrected his viewpoint. In [77] he says: “Interactions in such
a theory [constructed from Fµν and its derivatives] will have a rapid fall-off at large distance, faster
than the usual inverse-square law. This is perfectly possible [my emphasis], but gauge-invariant
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and spin j would vanish as pj for p → 0, in contradiction with the known existence of
inverse-square-law forces. We are therefore forced to turn from these tensor fields to the
potentials. . . The potentials are not tensor fields; indeed, they cannot be, for we know from
a very general theorem [75b] that no symmetric tensor field of rank j can be constructed
from the creation and annihilation operators of massless particles of spin j. It is for this
reason that some field theorists have been led to introduce fictitious photons and gravitons of
helicity other than ±j, as well as the indefinite metric that must accompany them. Preferring
to avoid such unphysical monstrosities, we must ask now what sort of coupling we can give
our nontensor potentials without losing the Lorentz invariance of the S matrix?. . . Those
in which the potential is coupled to a conserved current.” Thus, gauge models obtain some
physical grounds from the Lorentz invariance. We shall also discuss the physical content
related to these words in further work.

III. THE WEINBERG FORMALISM IN NEW DEVELOPMENT

In the papers [66] another equation in the (1, 0)⊕(0, 1) representation has been proposed.
It reads (pµ is the differential operator, E =

√
p 2 +m2)[

γµνpµpν +
i(∂/∂t)

E
m2

]
ψ = 0 . (41)

The auxiliary condition

(pµpµ +m2)ψ = 0 (42)

is implied. “. . . In the momentum representation the wave equation may be written as
[66b,formula (12)]

[±γµνpµpν +m2]U±(p) = 0 . (43)

corresponding to the particle and antiparticle with the column vector U+(p) and U−(p),
respectively.” Many dynamical features of this approach have been analyzed in those papers
but, unfortunately, the author erroneously claimed that the two formulation (the Weinberg’s
one and his own formulation) “are equivalent in physical content”. The matters related with
the discrete symmetry operations have been analyzed in detail in the recent years only by
Ahluwalia et al., ref. [3,5] and [4b]. First of all in this Section let us follow the arguments
of Ahluwalia et al. According to the Wigner rules (29,31a,31b) in the notation of papers [3]
one has

φ
R
(p) = Λ

R
φ
R
(0) = exp(+J ·ϕ)φ

R
(0) , (44a)

φ
L
(p) = Λ

L
φ
L
(0) = exp(−J ·ϕ)φ

L
(0) , (44b)

with φ
R,L

(p) being (j, 0) right- and (0, j) left- “spinors” in the momentum representation,
respectively; ϕ are the parameters of the Lorentz boost. By means of the explicit application

theories that use vector fields for massless spin one particles [(?) – my question] represent a more
general class of theories that are actually realized in nature.” Let us wait, whether one would be
necessary further corrections of previous viewpoints?
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(44a,44b) the uσ(p) and vσ(p) bispinors have been found in the j = 1, j = 3/2 and j = 2
cases [3a] in the generalized canonical representation. For the (1, 0) ⊕ (0, 1) “bispinors”
see, e.g., formulas (7) of [3b]. It was proved that the states answering for positive- and
negative- energy solutions have intrinsic parities +1 and −1, respectively, when applying
the space inversion operation. The conclusion has been achieved in the Fock secondary-
quantization space too, thus proving that we have an explicit example of the theory envisaged
by Bargmann, Wightman and Wigner (BWW) long ago, ref. [78b]. The remarkable feature
of this formulation is: a boson and its antiboson have opposite intrinsic parities. Origins
of this fact have been explained in ref. [2] thanks to an anonymous referee. Namely, “the
relative phase ε between particle and antiparticle states is not arbitrary and is naturally
defined as:

U(P )U(C) = εU(C)U(P ) . (45)

[ One can prove that ] ε = ±1 by using associativity of the group law.” Depending on
the operations of the space inversion and of the charge conjugation either commute or
anticommute we obtain either the same or the opposite values of parities for particle and
antiparticle. The (anti)commutator of these operations in the Fock space is “a function of
the Charge operator with formal and phenomenological consequences”, refs. [57,5,2]. The
massless limit of the theory in the (1, 0) ⊕ (0, 1) representation was studied in [1,2,4] with
the following result achieved (cited from [2]): “Present theoretical arguments suggest that
in strong fields, or high-frequency phenomenon, Maxwell equations may not be an adequate
description of nature. Whether this is so can only be decided by experiment(s). Similar
conclusions, in apparently very different framework, have been independently arrived at by
M. Evans and communicated to the author.”

In ref. [4] the properties of the light-front-form (1/2, 0) and (0, 1/2) spinors have been un-
der study. An unexpected result has been obtained that they do not get interchanged under
the operation of parity. Thus, one must take into account the evolution of a physical system
not only along x+ but also along the x− direction. In [5] the Majorana-McLennan-Case con-
struct has been analyzed and interesting mathematical and phenomenological connections
have been found. The analysis resulted in a series of papers of both others and mine in
many physical journals, but a detailed presentation of the McLennan-Case-Ahluwalia ideas
in the (1/2, 0) ⊕ (0, 1/2) representation is out of a subject of this paper.

In a recent series of my papers [25–30] I slightly went from the BWW-type theory in the
form presented by Ahluwalia et al. and advocated co-existence of two Weinberg’s equations
with opposite signs in the mass term for the spin j = 1 case. Their connections with classical
and quantum electrodynamics, and (the paper in preparation) the possibility of the use of
the same (j, 0)⊕ (0, j) field operator to obtain the Majorana states or the Dirac states were
studied in these and in the subsequent works. The reason for this reformulation is that
the Weinberg equations are of the second order in derivatives and each of them provides
dispersional relations with both positive and negative signs of the energy.8 I present a brief
content of those papers below.

8Generally speaking, the both massive Weinberg’s equations possess tachyonic solutions. While
now this content is not already in a strong contradiction with experimental observations (see the
enumeration of experiments on superluminal phenomena above and the papers of E. Recami)
someone can still regard this as a shortcoming because they have not yet been given adequate
explanation. We note that one can still escape from this problem by choosing the particular a and
b in the equation below:
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The 2(2j+ 1)- component analogues of the Dirac functions in the momentum space were
earlier defined as

U(p) =
m√

2

(
DJ (α(p)) ξσ

DJ
(
α−1 †(p)

)
ξσ

)
, (47)

for positive-energy states, and

V(p) =
m√

2

 DJ
(
α(p)Θ[1/2]

)
ξ∗σ

DJ
(
α−1 †(p)Θ[1/2]

)
(−1)2Jξ∗σ

 , (48)

for negative-energy states, e.g., ref. [56]. The following notation was used

α(p) =
p0 +m+ (σ · p)√

2m(p0 +m)
, Θ[1/2] = −iσ2 . (49)

For example, in the case of spin j = 1, one has

D 1 (α(p)) = 1 +
(J · p)

m
+

(J · p)2

m(p0 +m)
, (50a)

D 1
(
α−1 †(p)

)
= 1− (J · p)

m
+

(J · p)2

m(p0 +m)
, (50b)

D 1
(
α(p)Θ[1/2]

)
=

[
1 +

(J · p)

m
+

(J · p)2

m(p0 +m)

]
Θ[1] , (50c)

D 1
(
α−1 †(p)Θ[1/2]

)
=

[
1− (J · p)

m
+

(J · p)2

m(p0 +m)

]
Θ[1] ; (50d)

Θ[1/2], Θ[1] are the Wigner time-reversal operators for spin 1/2 and 1, respectively. These
definitions lead to the formulation in which the physical content given by positive and
negative-energy “bispinors” is the same (like in the paper of R. H. Tucker and C. L. Ham-
mer [73]). One can consider that Vσ(p) = (−1)1−σγ5Sc[1]U−σ(p) and, thus, the explicit form
of the negative-energy solutions would be the same as of the positive-energy solutions in
accordance with definitions (47,48).

Next, let me look at the Proca equations for a j = 1 massive particle

∂µFµν = m2Aν , (51a)

Fµν = ∂µAν − ∂νAµ (51b)

in the form given in ref. [49]. The Euclidean metric, xµ = (x, x4 = it) and notation
∂µ = (∇,−i∂/∂t), ∂ 2

µ = ∇2 − ∂2
t , are used. By means of the choice of Fµν components as

physical variables one can rewrite the set of equations to

[
γαβpαpβ + apαpα + bm2

]
ψ = 0 . (46)

Thus, one can obtain the Hammer-Tucker equations [73], which have dispersion relations E =
±
√

p 2 +m2 if one restricts by particles with mass.
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m2Fµν = ∂µ∂αFαν − ∂ν∂αFαµ (52)

and

∂2
λFµν = m2Fµν . (53)

It is easy to show that they can be represented in the form (F44 = 0, F4i = iEi and
Fjk = εjkiBi; pα = −i∂α):

(m2 + p2
4)Ei + pipjEj + iεijkp4pjBk = 0

(m2 + p 2)Bi − pipjBj + iεijkp4pjEk = 0 ,
(54)

or 
[m2 + p2

4 + p 2 − (J · p)2]ij Ej + p4(J · p)ijBj = 0

[m2 + (J · p)2]ij Bj + p4(J · p)ijEj = 0 .
(55)

After adding and subtracting the obtained equations yield
m2(E + iB)i + pαpαEi − (J · p)2

ij(E− iB)j + p4(J · p)ij(B + iE)j = 0

m2(E− iB)i + pαpαEi − (J · p)2
ij(E + iB)j + p4(J · p)ij(B− iE)j = 0 ,

(56)

with (Ji)jk = −iεijk being the j = 1 spin matrices. Equations are equivalent (within a
constant factor) to the Hammer-Tucker equation [73]

(γαβpαpβ + pαpα + 2m2)ψ1 = 0 , (57)

in the case of the choice χ = E + iB and ϕ = E − iB, ψ1 = column (χ, ϕ). Matrices
γαβ are the covariantly defined matrices of Barut, Muzinich and Williams [8] for spin j = 1.
The equation (57) for massive particles is characterized by positive- and negative-energy
solutions with a physical dispersion only Ep = ±

√
p 2 +m2, the determinant is equal to

Det
[
γαβpαpβ + pαpα + 2m2

]
= −64m6(p2

0 − p 2 −m2)3 , (58)

However, there is another equation which also does not have acausal solutions. The second
one (with a = −1 and b = −2, see (46)) is

(γαβpαpβ − pαpα − 2m2)ψ2 = 0 . (59)

In the tensor form it leads to the equations which are dual to (54)
(m2 + p 2)Ci − pipjCj − iεijkp4pjDk = 0

(m2 + p2
4)Di + pipjDj − iεijkp4pjCk = 0 .

(60)

They can be rewritten in the form, cf. (52),

m2F̃µν = ∂µ∂αF̃αν − ∂ν∂αF̃αµ , (61)
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with F̃4i = iDi and F̃jk = −εjkiCi. The vector Ci is an analog of Ei and Di is an analog

of Bi because in some cases it is convenient to equate F̃µν = 1
2
εµνρσFρσ, ε1234 = −i. The

following properties of the antisymmetric Levi-Civita tensor

εijkεijl = 2δkl , εijkεilm = (δjlδkm − δjmδkl) ,

and

εijkεlmn = Det

 δil δim δin
δjl δjm δjn
δkl δkm δkn


have been used.

Comparing the structure of the Weinberg equation (a = 0, b = 1) with the Hammer-
Tucker doubles one can convince ourselves that the former can be represented in the tensor
form:

m2Fµν = ∂µ∂αFαν − ∂ν∂αFαµ +
1

2
(m2 − ∂2

λ)Fµν , (62)

that corresponds to Eq. (64a). However, as we learned, it is possible to build an equation
— ‘double’ :

m2F̃µν = ∂µ∂αF̃αν − ∂ν∂αF̃αµ +
1

2
(m2 − ∂2

λ)F̃µν , (63)

that corresponds to Eq. (64b). The Weinberg’s set of equations is written in the form:

(γαβpαpβ +m2)ψ1 = 0 , (64a)

(γαβpαpβ −m2)ψ2 = 0 . (64b)

Thanks to the Klein-Gordon equation (53) these equations are equivalent to the Proca tensor
equations (52,61), and to the Hammer-Tucker doubles, in a free case. However, if interaction
is included, one cannot say that. The second equation (64b) coincides with the Ahluwalia
et al. equation for v spinors (Eq. (16) of ref. [3b]) or with Eq. (12) of ref. [66b]. Thus, the
general solution describing j = 1 states can be presented as a superposition

Ψ(1) = c1ψ
(1)
1 + c2ψ

(1)
2 , (65)

where the constants c1 and c2 are to be defined from the boundary, initial and normalization
conditions. Let me note a surprising fact: while both the massive Proca equations (or
the Hammer-Tucker ones) and the Klein-Gordon equation do not possess ‘non-physical’
solutions, their sum, Eqs. (62,63), or the Weinberg equations (64a,64b), acquire tachyonic
solutions. Next, equations (64a) and (64b) can recast in another form (index “T” denotes a
transpose matrix): [

γ44p
2
4 + 2γ

T

4ip4pi + γijpipj −m2
]
ψ

(2)
1 = 0 , (66a)[

γ44p
2
4 + 2γ

T

4ip4pi + γijpipj +m2
]
ψ

(2)
2 = 0 , (66b)

respectively, if understand ψ
(2)
1 ∼ column (Bi + iEi, Bi − iEi) = iγ5γ44ψ

(1)
1 and ψ

(2)
2 ∼

column (Di+iCi, Di−iCi) = iγ5γ44ψ
(1)
2 . The general solution is again a linear combination
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Ψ(2) = c1ψ
(2)
1 + c2ψ

(2)
2 . (67)

From, e.g., Eq. (64a), dividing ψ(1)
1 into longitudinal and transversal parts one can come

to the equations[
E2 − p 2

]
(E + iB)‖ −m2(E− iB)‖+

+
[
E2 + p 2 − 2E(J · p)

]
(E + iB)⊥ −m2(E− iB)⊥ = 0 , (68)

and [
E2 − p 2

]
(E− iB)‖ −m2(E + iB)‖+

+
[
E2 + p 2 + 2E(J · p)

]
(E− iB)⊥ −m2(E + iB)⊥ = 0 . (69)

One can see that in the classical field theory antisymmetric tensor matter fields are the fields

having transversal components in the massless limit. Under the transformations ψ(1)
1 →

γ5ψ
(1)
2 or ψ

(2)
1 → γ5ψ

(2)
2 the set of equations (64a) and (64b), or Eqs. (66a) and (66b), leave

to be invariant. The origin of this fact is the dual invariance of the set of the Proca equations.
In the matrix form dual transformations correspond to the chiral transformations.

Let me consider the question of the double solutions on the basis of spinorial analysis.
In ref. [66a,p.1305] (see also [12, p.60-61]) relations between the Weinberg j = 1 “bispinor”
(bivector, indeed) and symmetric spinors of 2j- rank have been discussed. It was noted
there: “The wave function may be written in terms of two three-component functions ψ =
column(χ ϕ), that, for the continuous group, transform independently each of other and
that are related to two symmetric spinors:

χ1 = χ1̇1̇, χ2 =
√

2χ1̇2̇, χ3 = χ2̇2̇ , (70a)

ϕ1 = ϕ11, ϕ2 =
√

2ϕ12, ϕ3 = ϕ22 , (70b)

when the standard representation for the spin-one matrices, with J3 diagonal is used.”
Under the inversion operation we have the following rules [12, p.59]: ϕα → χα̇, χα̇ → ϕα,
ϕα → −χα̇ and χα̇ → −ϕα. Hence, one can deduce (if one understand χα̇β̇ = χ{α̇χβ̇} ,

ϕαβ = ϕ{αϕβ})

χ1̇1̇ → ϕ11 , χ2̇2̇ → ϕ22 , χ{1̇2̇} → ϕ{12} , (71a)

ϕ11 → χ1̇1̇ , ϕ22 → χ2̇2̇ , ϕ{12}→ χ{1̇2̇} . (71b)

However, this definition of symmetric spinors of the second rank χ and ϕ is ambiguous. We

are also able to define, e.g., χ̃α̇β̇ = χ{α̇Hβ̇} and ϕ̃αβ = ϕ{αΦβ}, where Hβ̇ = ϕ∗β, Φβ = (χβ̇)∗.
It is straightforwardly showed that in the framework of the second definition we have under
the space-inversion operation:

χ̃1̇1̇ → −ϕ̃11 , χ̃2̇2̇ →−ϕ̃22 , χ̃{1̇2̇} → −ϕ̃{12} , (72a)

ϕ11 → −χ̃1̇1̇ , ϕ̃22 → −χ̃2̇2̇ , ϕ̃{12}→ −χ̃{1̇2̇} . (72b)

The Weinberg “bispinor” (χα̇β̇ ϕαβ) corresponds to the equations (66a) and (66b) , mean-

while (χ̃α̇β̇ ϕ̃αβ), to the equation (64a) and (64b). Similar conclusions can be arrived at in
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the case of the parity definition as P 2 = −1. Transformation rules are then ϕα → iχα̇,
χα̇ → iϕα, ϕα → −iχα̇ and χα̇ → −iϕα, ref. [12, p.59] . Hence, χα̇β̇ ↔ −ϕαβ and

χ̃α̇β̇ ↔−ϕ̃αβ, but ϕα β ↔ χ β̇
α̇ and ϕ̃α β ↔ χ̃ β̇

α̇ .
In order to consider the corresponding dynamical content we should choose an appropri-

ate Lagrangian. In the framework of this review we concern with the Lagrangian which is
similar to the one used in earlier works on the 2(2j + 1) formalism (see for references [24]).
Our Lagrangian includes additional terms which respond to the Weinberg double and does
not suffer from the problems noted in the old works. Here it is:9 , 10

L = −∂µψ1γµν∂νψ1 − ∂µψ2γµν∂νψ2 −m2ψ1ψ1 +m2ψ2ψ2 . (74)

The Lagrangian (74) leads to the equations (64a,64b) which possess solutions with a ‘correct’
(bradyon) physical dispersion and tachyonic solutions as well. This Lagrangian (74) is scalar,
Hermitian and it contains only first-order time derivatives. In order to obtain Lagrangians
corresponding to the Tucker-Hammer set (57,59), obviously, one should add in (74) terms
answering for the Klein-Gordon equation.

At this point I would like to regard the question of solutions in the momentum space.
Using the plane-wave expansion for the most general case

ψ1(x) =
∑
σ

∫ d3p

(2π)3

1

m
√

2Ep

[
U σ

1 (p)aσ(p)eip·x + V σ1 (p)b †σ(p)e−ip·x
]

, (75a)

ψ2(x) =
∑
σ

∫ d3p

(2π)3

1

m
√

2Ep

[
U σ

2 (p)cσ(p)eip·x + V σ2 (p)d †σ(p)e−ip·x
]

, (75b)

one can see that the momentum-space double equations[
−γ44E

2 + 2iEγ4ipi + γijpipj +m2
]
Uσ1 (p) = 0 (or Vσ1 (p)) , (76a)[

−γ44E
2 + 2iEγ4ipi + γijpipj −m2

]
Uσ2 (p) = 0 (or Vσ2 (p)) (76b)

are satisfied by “bispinors”

U (1)σ
1 (p) =

m√
2


[
1 + (J·p)

m
+ (J·p)2

m(Ep+m)

]
ξσ[

1− (J·p)
m

+ (J·p)2

m(Ep+m)

]
ξσ

 , (77)

and

9Under field functions we assume ψ(1)
1,2. Of course, one can use another form with substitutions:

ψ
(1)
1,2 → ψ

(2)
2,1 and γµν → γ̃µν , where γ̃µν ≡ γ

T

µν ≡ γ44γµνγ44.

10Questions related with other possible Lagrangians will be solved in other papers. The second
form is with the following dynamical part:

L(2′) = −∂µψ1γµν∂νψ2 − ∂µψ2γµν∂νψ1 , (73)

where ψ1 and ψ2 are defined by the equations (64a,64b). But, this form appears not to admit the
mass term in an ordinary sense.
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U (1)σ
2 (p) =

m√
2


[
1 + (J·p)

m
+ (J·p)2

m(Ep+m)

]
ξσ[

−1 + (J·p)
m
− (J·p)2

m(Ep+m)

]
ξσ

 , (78)

respectively. The form (77) has been presented by Hammer, Tucker and Novozhilov in
refs. [73,56]. The bispinor normalization in the majority of the previous papers is chosen
to unit. However, as mentioned in ref. [3] it is more convenient to work with bispinors
normalized to the mass, e.g., ±m2j in order to make zero-momentum spinors to vanish
in the massless limit. Here and below I keep the normalization of bispinors as in ref. [3].
“Bispinors” of Ahluwalia et al., ref. [3], can be written in a more compact form:

uσAJG(p) =

( [
m+ (J·p)2

Ep+m

]
ξσ

(J · p)ξσ

)
, vσAJG(p) =

(
0 1
1 0

)
uσAJG(p) . (79)

They coincide with the Hammer-Tucker-Novozhilov “bispinors” within a normalization and
a unitary transformation by U matrix:

uσ [3](p) = m ·UUσ [73,56](p) =
m√

2

(
1 1
1 −1

)
Uσ [73,56](p) , (80a)

vσ [3](p) = m ·Uγ5Uσ [73,56](p) =
m√

2

(
1 1
1 −1

)
γ5Uσ [73,56](p) . (80b)

But, as we found the Weinberg equations (with +m2 and with −m2) have solutions with
both positive- and negative-energies. We have proposed the interpretation of the latter on
p. 15. In the framework of this paper one can consider that

V (1)
σ (p) = (−1)1−σγ5S

c
[1]U

(1)
−σ(p) . (81)

Thus, in the case of the choice U (1)σ
1 (p) and V (1)σ

2 (p) ∼ γ5U (1)σ
1 (p) as physical “bispinors”

we come to the Bargmann-Wightman-Wigner-type (BWW) quantum field model proposed

by Ahluwalia et al. Of course, following the same logic one can choose U (1)σ
2 and V (1)σ

1 as
positive- and negative- “bispinors”, respectively, and come to a reformulation of the BWW
theory. While in this case parities of a boson and its antiboson are opposite, we have −1
for U- “bispinor” and +1 for V- “bispinor”, i.e. different in the sign from the model of
Ahluwalia et al.11 In the meantime, the construct proposed by Weinberg [75] and developed

in this paper is also possible. The V (1)σ
1 (p) as defined by (81) can also be solutions of the

equation (64a). The origin of the possibility that the positive- and negative-energy solutions
in Eqs. (76a,76b) can coincide each other is the following: the Weinberg equations are of the
second order in time derivatives. The Bargmann-Wightman-Wigner construct presented by
Ahluwalia [3] is not the only construct in the (1, 0)⊕ (0, 1) representation and one can start
with the earlier definitions of the 2(2j + 1) bispinors.

Next, previously we gave two additional equations (66a,66b). Their solutions can also
be useful because of the possibility of the use of different Lagrangian forms. Solutions in
the momentum representation are written

11At the present level of our knowledge this mathematical difference has no physical significance,
but we want to stay at the most general positions. Perhaps, some yet unknown forms of interactions
(e.g. of neutral particles) can lead to the observed physical difference between these models.
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U (2)σ
1 (p) =

m√
2


[
1− (J·p)

m
+ (J·p)2

m(Ep+m)

]
ξσ[

−1− (J·p)
m
− (J·p)2

m(Ep+m)

]
ξσ

 , (82)

U (2)σ
2 (p) =

m√
2


[
1− (J·p)

m
+ (J·p)2

m(Ep+m)

]
ξσ[

1 + (J·p)
m

+ (J·p)2

m(Ep+m)

]
ξσ

 . (83)

Therefore, one has U (1)
2 (p) = γ5U (1)

1 (p) and U (1)
2 (p) = −U (1)

1 (p)γ5; U (2)
1 (p) = γ5γ44U (1)

1 (p)

and U (2)

1 = U (1)

1 γ5γ44; U (2)
2 (p) = γ44U (1)

1 (p) and U (2)

2 (p) = U (1)

1 γ44. In fact, they are con-
nected by the transformations of the inversion group. The equation (81) permits one to find
corresponding relations with V “bispinors”.

Let me now apply the quantization procedure to the Weinberg fields. From the defini-
tions [49]:

Tµν = −
∑
i

{
∂L

∂(∂µφi)
∂νφi + ∂νφi

∂L
∂(∂µφi)

}
+ Lδµν , (84a)

Pµ =
∫
Pµ(x)d3x = −i

∫
T4µd

3x (84b)

one can find the energy-momentum tensor

Tµν = ∂αψ1γαµ∂νψ1 + ∂νψ1γµα∂αψ1+

+ ∂αψ2γαµ∂νψ2 + ∂νψ2γµα∂αψ2 + Lδµν . (85)

As a result the Hamiltonian is

H =
∫ [
−∂4ψ1γ44∂4ψ1 + ∂iψ1γij∂jψ1−

− ∂4ψ2γ44∂4ψ2 + ∂iψ2γij∂jψ2 +m2ψ1ψ1 −m2ψ2ψ2

]
d3x . (86)

Using the plane-wave expansion and the procedure of, e.g., ref. [13] one can come to the
quantized Hamiltonian12

H =
∑
σ

∫ d3p

(2π)3
Ep

[
a †σ(p)aσ(p) + bσ(p)b †σ(p) + c †σ(p)cσ(p) + dσ(p)d †σ(p)

]
, (87)

Therefore, following the standard textbooks,e.g., refs. [13,12], which advocate the positive-
definiteness of the secondary-quantized Hamiltonian, the commutation relations can be set
up as follows:[

aσ(p), a†σ′(k)
]
−

=
[
cσ(p), c†σ′(k)

]
−

= (2π)3δσσ′δ(p− k) , (88a)[
bσ(p), b†σ′(k)

]
−

=
[
dσ(p), d†σ′(k)

]
−

= (2π)3δσσ′δ(p− k) , (88b)

12Writing the following form we do not still exclude the possibility of certain relations between
creation and annihilation operators of the fields ψ(k)

i .
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or even in the more general form [26,30]. It is easy to see that the Hamiltonian is positive-
definite and the translational invariance still keeps in the framework of this description (cf.
with ref. [75,3]). Please pay attention here: I did never apply the indefinite metric.

Analogously, from the definitions

Jµ = −i
∑
i

{
∂L

∂(∂µφi)
φi − φi

∂L
∂(∂µφi)

}
, (89a)

Q = −i
∫
J4(x)d3x , (89b)

and

Mµν,λ = xµTλν − xνTλµ−

− i
∑
i

{
∂L

∂(∂λφi)
Nφi
µνφi + φiN

φi
µν

∂L
∂(∂λφi)

}
, (90a)

Mµν = −i
∫
Mµν,4(x)d3x , (90b)

one can find the current operator

Jµ = i
[
∂αψ1γαµψ1 − ψ1γµα∂αψ1+

+ ∂αψ2γαµψ2 − ψ2γµα∂αψ2

]
; (91)

and using (90a,90b) the spin momentum tensor reads

Sµν,λ = i
[
∂αψ1γαλN

ψ1
µνψ1 + ψ1N

ψ1
µν γλα∂αψ1+

+ ∂αψ2γαλN
ψ2
µν ψ2 + ψ2N

ψ2
µν γλα∂αψ2

]
. (92)

If the Lorentz transformations (a j = 1 case) are defined from13

ΛγµνΛaµαaνβ = γαβ , (93a)

ΛΛ = 1 , (93b)

Λ = γ44Λ†γ44 . (93c)

then in order to keep the Lorentz covariance of the Weinberg equations and of the Lagrangian
(74) one can use the following generators:

Nψ1,ψ2(j=1)
µν = −Nψ1,ψ2(j=1)

µν =
1

6
γ5,µν , (94)

The matrix γ5,µν = i [γµλ, γνλ]− is defined to be Hermitian.
The quantized charge operator and the quantized spin operator follow immediately from

(91) and (92):

13The matters of combining the Lorentz, dual and parity transformations in the case of higher-spin
equations have been regarded in [3b,25,29] and earlier in [78].
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Q =
∑
σ

∫ d3p

(2π)3

[
a†σ(p)aσ(p) − bσ(p)b†σ(p) + c†σ(p)cσ(p)− dσ(p)d†σ(p)

]
, (95)

(W · n) =
∑
σσ′

∫ d3p

(2π)3

1

m2Ep
Uσ1(p)(Epγ44 − iγ4ipi) I ⊗ (J · n)Uσ′1 (p)×

×
[
a†σ(p)aσ′(p) + c†σ(p)cσ′(p)− bσ(p)b†σ′(p)− dσ(p)d†σ′(p)

]
(96)

(provided that the frame is chosen in such a way that n || p is along the third axis). It
is easy to verify eigenvalues of the charge operator are ±1,14 and of the spin operator are

ξ∗σ(J · n)ξσ′ = +1, 0 − 1 (97)

in a massive case and ±1 in a massless case (see the discussion on the massless limit of the
Weinberg “bispinors” in ref. [3a,4]).

In order to solve the question of finding propagators in this theory we would like to
consider the most general case. In ref. [3a] a particular case of the BWW “bispinors” has
been regarded. In order to decide what case is physically relevant for describing one or
another situation one should know surely which symmetries are respected by the Nature.
So, let us check, if the sum of four equations (x = x2 − x1)

[
γµν∂µ∂ν −m2

] ∫ d3p

(2π)32Ep

[
a θ(t2 − t1)Uσ (1)

1 (p)⊗ Uσ (1)
1 (p)eip·x+

+b θ(t1 − t2)Vσ (1)
1 (p)⊗ Vσ (1)

1 (p)e−ip·x
]

+

+
[
γµν∂µ∂ν +m2

] ∫ d3p

(2π)32Ep

[
a θ(t2 − t1)Uσ (1)

2 (p)⊗Uσ (1)
2 (p)eip·x+

+b θ(t1 − t2)Vσ (1)
2 (p)⊗ Vσ (1)

2 (p)e−ip·x
]

+

+
[
γ̃µν∂µ∂ν +m2

] ∫ d3p

(2π)32Ep

[
a θ(t2 − t1)Uσ (2)

1 (p)⊗Uσ (2)
1 (p)eip·x+

+b θ(t1 − t2)Vσ (2)
1 (p)⊗ Vσ (2)

1 (p)e−ip·x
]

+

+
[
γ̃µν∂µ∂ν −m2

] ∫ d3p

(2π)32Ep

[
a θ(t2 − t1)Uσ (2)

2 (p)⊗ Uσ (2)

2 (p)eip·x+

+b θ(t1 − t2)Vσ (2)
2 (p)⊗ Vσ (2)

2 (p)e−ip·x
]

= δ(4)(x2 − x1) (98)

can be satisfied by the definite choice of the constant a and b. In the process of calculations
I assume that the set of the analogues of the “Pauli spinors” in the (1, 0) or (0, 1) spaces
is a complete set in mathematical sense and it is normalized to δσσ′ . In fact, we follow
the approach mutatis mutandis of the known textbooks [44, p.91-92] in a straightforward
manner. The reasons for necessitated modifications of the procedure (see Eq. (98)) is

14In the Majorana construct the eigenvalue is zero.
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the fact that each of Weinberg massive equations support acausal solutions [1,2]. Simple
calculations yield

∂µ∂ν
[
a θ(t2 − t1) eip·(x2−x1) + b θ(t1 − t2) e−ip(x2−x1)

]
=

= − [a pµpνθ(t2 − t1) exp [ip · (x2 − x1)] + b pµpνθ(t1 − t2) exp [−ip · (x2 − x1)]] +

+ a [−δµ4δν4δ
′(t2 − t1) + i(pµδν4 + pνδµ4)δ(t2 − t1)] exp [ip(x2 − x1)] +

+ b [δµ4δν4δ
′(t2 − t1) + i(pµδν4 + pνδµ4)δ(t2 − t1)] exp [−ip(x2− x1)] ; (99)

and

U (1)
1 U

(1)
1 =

1

2

(
m2 Sp ⊗ Sp

Sp ⊗ Sp m2

)
, U (1)

2 U
(1)
2 =

1

2

( −m2 Sp ⊗ Sp
Sp ⊗ Sp −m2

)
, (100)

U (2)
1 U

(2)

1 =
1

2

( −m2 Sp ⊗ Sp
Sp ⊗ Sp −m2

)
, U (2)

2 U
(2)

2 =
1

2

(
m2 Sp ⊗ Sp

Sp ⊗ Sp m2

)
, (101)

where

Sp = m+ (J · p) +
(J · p)2

Ep +m
, (102)

Sp = m− (J · p) +
(J · p)2

Ep +m
. (103)

Due to the algebraic relations

[Ep − (J · p)]Sp ⊗ Sp = m2 [Ep + (J · p)] ,

[Ep + (J · p)]Sp ⊗ Sp = m2 [Ep − (J · p)]

after simplifying the left sides of (98) and comparing it with the right side we find the con-
stants to be equal to a = b = 1/4im2. Thus, if consider all four equations (64a,64b,66a,66b)
one can use the “Wick’s formula” for the time-ordered particle operators to find propaga-
tors:

S(1)
F (p) =

i [γµνpµpν −m2]

8m2(p2 +m2 − iε) , (104a)

S
(2)
F (p) =

i [γµνpµpν +m2]

8m2(p2 +m2 − iε) , (104b)

S
(3)
F (p) =

i [γ̃µνpµpν +m2]

8m2(p2 +m2 − iε) , (104c)

S(4)
F (p) =

i [γ̃µνpµpν −m2]

8m2(p2 +m2 − iε) . (104d)

The conclusion is that the states described by the equations (64a,64b,66a,66b) cannot propa-
gate separately each other, what is the principal difference comparing with the Dirac j = 1/2
case.

Furthermore, I am able to recast the j = 1 Tucker-Hammer equation (57) which is free
of tachyonic solutions, or the Proca equation (52), to the form
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m2Ei = −∂
2Ei
∂t2

+ εijk
∂

∂xj

∂Bk

∂t
+

∂

∂xi

∂Ej
∂xj

, (105)

m2Bi = εijk
∂

∂xj

∂Ek
∂t

+
∂2Bi

∂x2
j

− ∂

∂xi

∂Bj

∂xj
. (106)

The Klein-Gordon equation (the D’Alembert equation in the massless limit)(
∂2

∂t2
− ∂2

∂x2
i

)
Fµν = −m2Fµν (107)

is implied (c = h̄ = 1). Introducing vector operators one can write equations in the following
form:

∂

∂t
curl B + grad divE− ∂2E

∂t2
= m2E , (108a)

∇2B− grad divB +
∂

∂t
curl E = m2B . (108b)

Taking into account the definitions:

ρe = divE , Je = curl B− ∂E

∂t
, (109a)

ρm = divB , Jm = −∂B

∂t
− curl E ; (109b)

the relation of the vector algebra (X is an arbitrary vector):

curl curl X = grad div X−∇2X , (110)

and the Klein-Gordon equation (107) one obtains two equivalent sets of equations, which
complete the Maxwell’s set of equations. The first one is

∂Je
∂t

+ grad ρe = m2E , (111a)

∂Jm
∂t

+ grad ρm = 0 ; (111b)

and the second one is

curl Jm = 0 (112a)

curl Je = −m2B . (112b)

I would like to remind that the Weinberg equations (and, hence, the equations (111a-112b)15)
can be obtained on the basis of a very few number of postulates; in fact, by using the Lorentz
transformation rules for the Weinberg bivector (or for the antisymmetric tensor field) and
the Ryder-Burgard relation [3,5].

15Beginning from the dual massive equations (59,61) and setting C ≡ E, D ≡ B one could
obtain
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In a massless limit the situation is different. Firstly, the set of equations (109b), with
the left side are chosen to be zero, is “an identity satisfied by certain space-time derivatives
of Fµν. . . , namely, refs. [32,72]

∂Fµν
∂xσ

+
∂Fνσ
∂xµ

+
∂Fσµ
∂xν

= 0 .” (115)

I believe that a similar consideration for the dual field F̃µν as in refs. [32,72] can reveal that
the same is true for the first equations (109a). So, in the massless case we met with the
problem of interpretation of the charge and the current.

Secondly, in order to satisfy the massless equations (112a,112b) one should assume that
the currents are represented in gradient forms of some scalar fields χe,m. What physical
significance should be attached to these chi-functions? In a massless case the charge densities
are then (see equations (111a,111b))

ρe = −∂χe
∂t

+ const , ρm = −∂χm
∂t

+ const , (116)

what tells us that ρe and ρm are constants provided that the primary functions χe,m are
the linear functions in time (decreasing or increasing?). One can obtain the Maxwell’s free-
space equations, in the definite choice of the χe and χm, namely, in the case when they are
constants.

It is useful to compare the resulting equations for ρe,m and Je,m and the fact of appearance
of functions χe,m with alternative formulations of electromagnetic theory discussed in the
Section I. I believe, this concept can also be useful in analyses of the E = 0 solutions in
higher-spin relativistic wave equations [61,51,1,2], which have been “baptized” by Moshinsky
and Del Sol in [55] as the relativistic cockroach nest. Finally, in ref. [37] it was mentioned
that solutions of Eqs. (4.21,4.22) of ref. [75b], see the same equations (2a,2b) in this article,
satisfy the equations of the type (105,106), “but not always vice versa”. An interpretation
of this statement and investigations of Eq. (57) with other initial and boundary conditions
(or of the functions χ) deserve further elaboration (both theoretical and experimental).

IV. DISCUSSION

Following my experience in discussions of the presented theory with other physicists
I believe that some questions touched in the previous Sections, particularly, on relations

∂Je
∂t

+ gradρe = 0 , (113a)

∂Jm
∂t

+ gradρm = m2B ; (113b)

and

curl Je = 0 , (114a)

curl Jm = m2E . (114b)

This signifies that the physical content spanned by massive dual fields can be different. The reader
can easily reveal parity-conjugated equations from Eqs. (66a,66b).

26



between various models, deserve to be clarified in detail. This Section will be constructed
in the form of questions and answers, which I am able to try to answer to the extent of
the present level of my knowledge. The main attention is paid to the recent claims of the
existence of the longitudinal magnetic field of electromagnetism by Profs. Evans and Vigier.
One should still note that the discussion of this Section has more speculative character
comparing with the previous Sections.

• What are connections between the classical Evans-Vigier B(3) field and the spin of the
present-day relativistic quantum mechanics?

The Evans-Vigier B- Cyclic Relations tautologically repeat the commutation relations
between spin components J1, J2 and J3 of the spin-1 representation, except for the fact
that the additional B(0) was introduced there. In these frameworks the conclusion was
made that the electromagnetic field has additional phase-free vector variable, which
can be named as B(3) and can be related to the J(3) ∼ J12 spin component in the
quantum case. It is regarded as the longitudinal magnetic field [34,35].16 Considering
the relativistic spin operator one could note that this correspondence can hold in the
particular choice of the Lagrangian, for instance, in a spirit of [14]. In my previous
paper [29], see also above, another choice of the Lagrangian was advocated which
leads to the (modified) Weinberg theory. But the relevant physical information can be
extracted from both formulations. As was discussed in my previous papers and here
the answer on the question of whether the antisymmetric tensor field is a “longitudinal”
field or a “transversal” field17 depends on: a) The application of the generalized Lorentz
condition ∂µF µν = 0 and/or of its dual to the corresponding quantum states; b) The
choice of the field operator and/or the choice of the normalization of field functions.18

The latter, while not always appreciated as deserve, of course, may be related with
the item (a).

On the classical level one can forget about the spin indices in the field operators
and work with the fields F µν(x) and its dual F̃ µν(x). In a particular choice of the
coefficients in the positive- and negative-energy parts of the Fourier expansion, for
instance:

F i0
(+)(p) =

1√
2

(Ei(p) + iBi(p)) , F i0
(−)(p) =

i√
2

(Ei(p)− iBi(p)) , (117a)

F ij
(+)(p) =

−i√
2
εijk(Ek(p)− iBk(p)) , F ij

(−)(p) =
1√
2
εijk(Ek(p) + iBk(p)) (117b)

16These authors used the word magnetic field because its effect in interaction with the matter is
the magnetization as shown in the inverse Faraday effect.

17We should still define, what sense is assigned to these notions. It would be more rigorously to
speak about the scalar product Wµ ·nµ of the Pauli-Lubanski operator with a normalized space-like
vector nµ, and/or about its eigenvalues and, then, search, whether they are equal to ±1 or 0 in
the j = 1 case.

18For instance, in the j = 1 case it would depend on the normalization of the field functions
composed of strengths E and B. One should also remember that the massless j = 1 case contains
many similarities with the j = 1/2 massless neutrino case.
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the spin operator19

Jk = εijk
∫
d3x

[
F i0(∂µF

jµ) + F̃ i0(∂µF̃
jµ)
]

(118)

becomes to be proportional to ipk/Ep ∼ i[E × B]k/Ep and, thus, after appropriate
quantization procedure, describes particles with spin 1 even in a massless case (as
opposed to the accustomed wisdom), e.g., refs. [39,47,6].

But, it is important that in the case of other choices of the positive/negative energy
parts of the field operator and/or the relevant Lagrangians the spin operator can be
equal to zero giving the scalar (“longitudinal”) particle(s). Probably, this statement
can be related also to the questions of the causal/acausal dispersion relations of Ep =
± | p | , 0.

Let us still go ahead. Even after applying the generalized Lorentz condition one must
not think that the antisymmetric tensor field becomes to be pure longitudinal! It
is easy to prove that the generalized Lorentz condition can be applied to the states
carrying helicity quantum numbers ±1. So, the equation (W µ · nµ) = 0 we can obtain
in this case does not signify the conventional accustomed pure “longitudity” (!?).20

First of all, one should note that in a massless case serious difficulties may arise with
choosing a space-like vector nµ, which is usually used in the similar analyses [44,
p.147]. Furthermore, it is obvious from the definitions of the Pauli-Lubanski vector
that W µPµ = 0. Since P µPµ = 0 for a particle on the light cone it becomes clear,
ref. [63, p.66], that W µ = λP µ with some, in general, complex coefficient λ. But, on the
classical level the W µ can be considered itself as some vector field. If the space part of
this vector is aligned with the third axis, it has the magnitude (after the corresponding
normalization) and the direction of the Evans-Vigier longitudinal magnetic field. If
one assumes in the process of calculations that the massless limit should be taken only
in the end of all calculations the constant λ can be found from the consideration of the
massive case which is in the complete analogy with the Itzykson-Zuber consideration
for fermions. It appears that while helicity and eigenvalues of the spin operator are
not the same things they can be always connected in each case of the choice of nµ 21

One can still take the definition of the nµ as in [44, p.147]:

nµ =

(
tµ − pµ (p · t)

m2

)
m

| p | , (119)

with tµ = (1, 0, 0, 0) and the third axis is along p. Then (W · n)/m | a >= J12 | a >.
One can recast the latter formula with taking into account Wµpµ = 0 to

W0 =| p | J12 , W · p = p0 | p | J12 , (120)

19The explicit form of the spin operator is a consequence of the particular choice of the Lagrangian
(see the formula (3) in ref. [29]). But, the problems of transversality (or longitudinality) and of
relevant physical content remain to be investigated in other choices of the Lagrangians.

20By the way, and the pure “transversality” as well.

21I am grateful to Prof. Z. Oziewicz for the discussion of these matters.
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which lead after W µ → λpµ to λ = |p|
p0
J12, or λ = p0

|p|J
12. Surprisingly that another

way, when the condition of the light cone W µ = λpµ is put from the beginning, we
come to

λ =
| p |
p0

J12

1− p2
0−p 2

m2

, (121)

which suggests J12 to be equal to zero provided that we want to obtain finite values
of λ !? This is a mathematical problem: the result depends on the order of applying
various limiting procedures. Returning to the formula (118) one can see that the
J12 can be equal to zero after the application of the generalized Lorentz conditions.
But, we just have seen that the possibility to apply these conditions depends on the
form of the field operator. The J12 may be not equal to zero and the “massless”
coordinate-space Maxwell equations may change its form.22 So, in certain cases we
have the Lorentz group symmetry but we can also have the Lorentz group contraction
and the problem seems to reduce to the question of existence of different symmetries
in the Nature. On the quantum level the J12 may give eigenvalues ±1 or disappear at
all. But, on the classical level one can consider that it takes continuous values, what
(with the appropriate coefficient) answers for the B(3) Evans-Vigier field. Of course,
in the latter case we do not bother the matters of parity conservation, which can be
fully appreciated in the Fock space only. The W ∼ B(3) may be not equal to zero
even if an explicit mass term is absent in the dynamical equations. What important
in the Evans-Vigier consideration, in my opinion, is that the helicity field forms a
third component of some isotopic complex vector, composed also from left- and right-
polarized radiations. Thus, on the classical level electromagnetism can be regarded as
having both “transversal” and “longitudinal” degrees of freedom.

• What are the Lorentz transformation rules for the Evans-Vigier field and its properties
with respect to discrete symmetry operations?

Since the relations of the Evans-Vigier field with the Pauli-Lubanski vector (and with
the 4-momentum vector too) were found [35,29] it is obviously that B(3) behaves itself
under the Lorentz transformations like space-components of the 4-vector. This was
proven mathematically in the recent preprint [31]:

B(0) ′ = γ(B(0) − β ·B(3)) , (122a)

B(3) ′ = B(3) +
γ − 1

β2
(β ·B(3))β − γβB(0) . (122b)

As for the parity matters. If accept the definition W µ = λP µ it is not obvious that
the Pauli-Lubanski 4-vector has an axial vector as its space part. Moreover, it was
proved [44, p.152] that UsP µ(Us)† = Pµ. So, this issue is required careful elaboration.
At this point we would like to remind that the quantum particle (antiparticle) states
can possess positive (negative) parity in the Dirac-like constructs. In the Majorana-
like constructs they may be not eigenstates of the Parity Operator in the conventional
sense [5].

22The similar researches are carried out by Profs. H. Múnera and O. Guzmán and communicated
with the author.
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• Does the Evans-Vigier field imply the mass of the photon and, if so, what is the massless
limit of this theory?

We saw that the classical helicity field exists even if a particle is on the light cone
(p0 = ± | p |), i.e., according to the accustomed wisdom, even if it is a massless particle.
The < J12 > may or may not be equal to zero. But, what is important, putting a
particle on the light cone is not always related to the application of the generalized
Lorentz condition as believed earlier. Nevertheless, in order to fully appreciate this
question one should understand what the mass is? If it is defined as a Casimir operator
of the relativity group, of course, on the light cone the particle is massless. On the
other hand, if ∂µF µν is not equal to zero, the latter quantity may be put in the
correspondence to ∼ mAν, according to the Proca equations, thus giving the mass for
some 4-vector potential field. So, massless antisymmetric tensor field does not always
signify that corresponding 4-vector potential field would be massless and vice versa.

• Does the E = 0 solution of the Maxwell’s dynamical equations have any physical sig-
nificance? Do longitudinal modes of electrodynamics have any physical significance?
The significance of the gauge according to Y. S. Kim.

First of all, if we put the energy E = 0 into the Maxwell’s equations of the form
(1a,1b), one can see that resulting equations are nothing more than the condition for
longitudinal modes, because in the Cartesian basis (Ji)jk = −iεijk. While it seems to
me that the physical significance of the E = 0 solution may be wider, in such a way
we see that it can be related to the longitudinal modes, particularly with the B(3).

Next, in the paper [38a] and [59] it was shown that any defect, any interaction which
causes a deviation from the particle to be a plane-wave (i.e., of the infinite extent)
would cause appearance of mass and spin. So, while on the light cone we appear not
to be able to distinguish the Evans-Vigier field from the 4-momentum of a field, as
soon as any of the related fields F µν and/or Aν obtain mass we could provide a clear
physical interpretation of the spin [59] and, hence, of the B(3) field. In other words,
any interactions (including those with vacuum) would lead to non-zero mass (and/or
spin) effects (like the Beth experiment and/or the Tam/Happer experiment, the inverse
Faraday effect) different from the momentum effects (like the light pressure). This is
in accordance with the claim of S. Coleman and E. Weinberg [19]. Indications at the
validity of this statement can be found in the quantum electrodynamics too, where we
meet with infrared and ultraviolet divergencies which require temporarily assignment
of the mass to the photon.23

Finally, in ref. [38b] it was argued on the basis of the Lorentz symmetry principles that
“the spin of the spin-1/2 massless particle should be anti-parallel to the momentum in
order that the spin state be gauge invariant”. The situation with photons is much more
troublesome because gauge parameters for the transformation leaving the 4-momentum
be invariant enter in both spin-up and spin-down polarization vectors. Probably, this
fact is related with the gauge non-invariance of the separation of the spin-1 angular
momentum into the orbital and spin part [59].

Concluding my series of papers on this subject, I think that due to the present ex-
perimental situation the standard model seems to be able to describe a restricted class of

23Another way to deal with divergences was presented in the work of Barut et al. [9]. His theory
does not use perturbation calculus substituting them by iteration procedure.
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phenomena only. Probably, origins of these limitations are in methodological failures which
were brought as a result of the unreasonable (and everywhere) application of the principles
which the Maxwell’s electromagnetic theory is based on. In my opinion, it is a particular
case only, which contains internal inconsistencies related mainly with the massless limit of
the massive Proca theory. Generalized models discussed in this paper appear to be suitable
candidates to begin to work out the unified field theory. They may be related each other and
it seems to indicate at the same physical reality. I believe the Weinberg 2(2j+1) component
formalism is the most convenient way for understanding the nature of higher spin particles,
the structure of the space-time and for describing many processes with bosons of spin 0 and
1 (perhaps, and of higher spins too), because this formalism is on an equal footing with the
well-developed Dirac formalism for spin-1/2 charged particles and manifests explicitly those
symmetry properties which are related to the Poincarè group and the group of inversion
operations. Some problems in Majorana-like constructs in higher-spin representations still
deserve further elaboration.
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Landau Course of Theoretical Physics. Vol. IV. (Moscow. Nauka, 1968) [English translation:
(Oxford, Pergamon Press, 1979)]

[13] N. N. Bogoliubov and D. V. Shirkov, Introduction to the Theory of Quantized Fields. (Moscow.
Nauka, 1983) [English translation: (John Wiley, 1980)]

[14] O. M. Boyarkin, Izvest. VUZ:fiz. 24, No. 11 (1981) 29 [English translation: Sov. Phys. J. 24
(1981) 1003]

[15] F. Chang and F. Gürsey, Nuovo Cim. A63 (1969) 617
[16] A. E. Chubykalo and R. Smirnov-Rueda, Phys. Rev. E53 (1996) 5373
[17] A. E. Chubykalo and R. Smirnov-Rueda, On the Convection Displacement Current and Alter-

native Form of Maxwell-Lorentz Equations. Prepirnt EFUAZ FT-96-25, Zacatecas, Jul. 1996
[18] T. E. Clark and S. T. Love, Nucl. Phys. B223 (1983) 135; T. E. Clark, C. H. Lee and S. T.

Clark, ibid 308 (1988) 379
[19] S. Coleman and E. Weinberg, Phys. Rev. D7 (1973) 1988
[20] P. A. M. Dirac, in Mathematical Foundations of Quantum Theory. Ed. A. R. Marlow (Academic

Press, 1978), p. 1; in Directions in Physics. Ed. H. Hora and J. R. Shepanski (J. Wiley & Sons,
NY, 1978), p. 32

[21] P. A. M. Dirac, Rev. Mod. Phys. 21 (1949) 392
[22] J. S. Dowker and Y. P. Dowker, Proc. Roy. Soc. A294 (1966) 175; J. S. Dowker, ibid A297

(1967) 351
[23] V. V. Dvoeglazov, Yu. N. Tyukhtyaev and R. N. Faustov, Mod. Phys. Lett. A8 (1993) 3263;

Fiz. Elem. Chast. At. Yadra 25 (1994) 144 [English translation: Phys. Part. Nucl. 25 (1994)
58]

[24] V. V. Dvoeglazov, Hadronic J. 16 (1993) 459; V. V. Dvoeglazov, Yu. N. Tyukhtyaev and S.
V. Khudyakov, Izvest. VUZ:fiz. 37, No. 9 (1994) 110 [English translation: Russ. Phys. J. 37
(1994) 898]; V. V. Dvoeglazov, Rev. Mex. Fis. Suppl. 40 (1994) 352

[25] V. V. Dvoeglazov, Mapping between antisymmetric tensor and Weinberg formulations. Preprint
EFUAZ FT-94-05 (hep-th/9408077). Zacatecas, Aug. 1994, accepted in “Helv. Phys. Acta”

[26] V. V. Dvoeglazov, What particles are described by the Weinberg theory? Preprint EFUAZ
FT-94-06 (hep-th/9408146). Zacatecas, Aug. 1994, accepted in “Helv. Phys. Acta”

[27] V. V. Dvoeglazov, The Weinberg propagators. Preprint EFUAZ FT-94-07 (hep-th/9408176).
Zacatecas, Aug. 1994, accepted in “Helv. Phys. Acta”

[28] V. V. Dvoeglazov, Can the 2(2j+1) Component Weinberg-Tucker-Hammer Equations Describe
the Electromagnetic Field? Preprint EFUAZ FT-94-09-REV (hep-th/9410174). Zacatecas,
Oct. 1994

[29] V. V. Dvoeglazov, About the Claimed ‘Longitudinal Nature’ of the Antisymmetric Tensor Field
After Quantization. Preprint EFUAZ FT-95-16-REV (hep-th/9604148), Zacatecas, Jan. 1996

[30] V. V. Dvoeglazov, Questions in the Theory of the (1, 0) ⊕ (0, 1) Quantized Fields. Preprint
EFUAZ FT-96-31, Zacatecas, Aug. 1996

[31] V. V. Dvoeglazov, A Note on the Relativistic Covariance of the B- Cyclic Relations. Preprint
EFUAZ FT-96-34 (physics/9611009), Sept. 1996

[32] F. J. Dyson, Am. J. Phys. 58 (1990) 209
[33] A. Einstein et al., The Principle of Relativity. (Dover Pub., New York, 1958) — reprints of

32

http://xxx.lanl.gov/abs/hep-th/9408077
http://xxx.lanl.gov/abs/hep-th/9408146
http://xxx.lanl.gov/abs/hep-th/9408176
http://xxx.lanl.gov/abs/hep-th/9410174
http://xxx.lanl.gov/abs/hep-th/9604148
http://xxx.lanl.gov/abs/physics/9611009


original papers
[34] M. W. Evans and J.-P. Vigier, Enigmatic Photon. Vols. 1 – 3 (Kluwer Academic Publishers,

Dordrecht, 1994-1996); the third volume with S. Roy and S. Jeffers
[35] M. W. Evans, Physica A214 (1995) 605
[36] V. A. Fock and B. Podolsky, Phys. Zeit. Sowjetun. 1 (1931) 801; ibid 2 (1932) 275; P. A. M.

Dirac, V. Fock and B. Podol’sky, in Selected Papers on Quantum Electrodynamics. Ed. by J.
Schwinger (Dover Pub., New York), p. 29

[37] A. Gersten, Conserved currents of the Maxwell equations in the presence of electric and mag-
netic sources. Preprint CERN-TH.4687/87, Geneva: CERN, 1987; Conserved currents of the
Maxwell equations with electric and magnetic sources. Preprint CERN-TH.4688/87, Geneva:
CERN, 1987

[38] D. Han, Y. S. Kim and D. Son, Phys. Lett. 131B (1983) 327; D. Han, Y. S. Kim and D.
Son, Phys. Rev. 26 (1982) 3717; Y. S. Kim, in Proceedings of the IV Wigner Symposium,
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