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Abstract

Type II superconductors will be considered as macroscopic quantum
gravitational antennas, which can simultaneously also be used as efficient
transducers for converting electromagnetic radiation into gravitational
radiation, and vice versa. A Meissner-like effect, in which the Lense-
Thirring field associated with a gravity wave is expelled from the interior
of the superconductor, is predicted. An analysis of a process of natural
impedance matching in type II superconductors such as YBCO based on
the Ginzburg-Landau theory yields an estimate of the transducer conver-
sion efficiency of the order of unity upon reflection of the wave. Thus effi-
cient emitters and receivers of gravitational radiation can be constructed
at microwave frequencies. A simple, Hertz-like experiment using YBCO
and 12 GHz microwaves is being performed to test these ideas. Results
of this experiment will be reported elsewhere.

(PACS nos.: 03.65.Ud, 04.30.Db, 04.30.Nk, 04.80.Nn, 74.60-w, 74.72.Bk)

1 Introduction

In 1966, DeWitt [1] considered the interaction of a superconductor with grav-
itational fields, in particular with the Lense-Thirring field. Starting from the
general relativistic Lagrangian for a single electron with a charge e and a mass
m, he derived in the limit of weak gravity and slow particles a nonrelativis-
tic Hamiltonian for a single electron in the superconductor, which satisfied the
minimal-coupling rule

p→ p− eA−mh, (1)
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where p is the canonical momentum, A is the usual vector potential, and h is a
gauge-like vector potential formed from the three space-time components gi0 of
the metric tensor viewed as an ordinary three-vector. Papini [2] then considered
the possibility of the detection the quantum phase shift induced by h arising
from the Lense-Thirring field generated by a nearby rotating massive body, by
means of a superconducting interference device (or SQUID) using Josephson
junctions. (For recent work along these lines, see [3].) In a series of papers
in the early 1980s, Anandan and I considered the possibility of constructing
antennas for time-varying Lense-Thirring fields, and thus for gravitational ra-
diation, using Josephson junctions as transducers, in neutral superfluid helium
analogs of the SQUID using an antenna geometry in the form of a figure 8
superfluid loop, and also an antenna bent into a the form of a baseball seam
[4]. In 1985, Anandan [5] considered the possibility of using superconducting
circuits as detectors for astrophysical sources of gravitational radiation, but
did not mention the possibility of superconductors being efficient emitters, and
thus, laboratory sources of gravity waves, as is considered here. In this paper, I
shall show that the use of Josephson junctions, which are difficult to implement
experimentally, is unnecessary, and that a superconductor, but not superfluid
helium, should by itself be a direct transducer from electromagnetic to gravi-
tational radiation upon reflection of the wave from a superconductor-vacuum
interface, with good conversion efficiency. By reciprocity, this conversion pro-
cess can be reversed, so that gravitational radiation can also be converted upon
reflection into electromagnetic radiation from the same interface, with equal effi-
ciency. The geometry of a superconducting slab-shaped antenna proposed here
is much simpler than that of the earlier proposed antenna geometries. These
developments open up the possibility of a Hertz-like experiment, in which the
emission and the reception of gravitational radiation at microwave frequencies
can be implemented by means of a pair of superconductors used as transducers.
This simple experiment is presently being performed.

2 Calculation of a Meissner-like effect in the lin-
ear response of a superconductor to gravita-

tional radiation

Consider a gravitational plane wave propagating along the z axis, which im-
pinges at normal incidence upon the circular face of a superconductor in the
form of a large circular slab of radius r0 and of thickness d. Let the radius
r0 be much larger than the wavelength λ of the plane wave, so that one can
neglect diffraction effects. For simplicity, let the superconductor be at a tem-
perature of absolute zero, so that only quantum effects need to be considered.
The calculation of the coupling energy of the superconductor in the simulta-
neous presence of both electromagnetic and gravitational fields starts from the
general relativistic Lagrangian for a single particle of rest mass m and charge e

2



(i.e., an electron, but neglecting its spin)

L = −m(−gµν ẋµẋν)1/2 + eAµẋ
µ, (2)

from which a minimal-coupling form of the nonrelativistic Hamiltonian for an
electron in a superconductor, in the limit of weak gravitational fields and low
velocities, has been derived by DeWitt [1]. Here, let us apply this minimal-
coupling Hamiltonian to a pair of electrons, i.e., a Cooper pair in a spin zero
state,

H =
1

2m2eff
(p− e2A−m2h)

2
, (3)

where m2 = 2m is the rest mass of the Cooper pair, m2eff is its effective mass,
e2 = 2e is its charge, p is its canonical momentum, A is the electromagnetic
vector potential, and h is the gravitomagnetic vector potential, which is the
gravitational analog of A in the case of weak gravity. The vector potential h
is the three-velocity formed from the space-time components hi0 of the small
deviations of the metric tensor hµν = gµν − ηµν from flat spacetime (the metric
tensor being given by gµν, and the Minkowski tensor for flat spacetime being
given by ηµν = diag(−1, 1, 1, 1)). Thus h|i ≡ hi0c. It is convenient for
performing this calculation to choose the radiation gauge for both A and h, so
that

∇ ·A = ∇ · h = 0. (4)

The coordinate system used here is the inertial frame which coincides with
the freely-falling center of mass of the superconductor at the origin, where the
observer is located, and is not the transverse-traceless gauge choice, where hi0
is chosen to be zero. The physical meaning of h is that it is the negative of the
three-velocity field of a system of noninteracting, locally freely-falling classical
test particles as seen by the observer. In Eq. (3), Cooper pairs are treated as
if they were free particles inside the superconductor, and we have neglected for
the moment their interactions with each other.

The electromagnetic vector potential A in the above minimal-coupling Hamil-
tonian gives rise to Aharonov-Bohm interference. In like manner, the gravito-
magnetic vector potential h gives rise to a general relativistic twin paradox for
rotating coordinate systems and for Lense-Thirring fields. Therefore h gives
rise to Sagnac interference in both light and matter waves. The Sagnac effect
has recently been observed in superfluid helium interferometers using Josephson
junctions, and has been used to detect the Earth’s rotation around its polar axis
[6].

From the above Hamiltonian, we see that the minimal coupling rule in the
quantum mechanics (QM) of Cooper pairs now becomes

p→ p− e2A −m2h (5)

in the simultaneous presence of electromagnetic (EM) and weak general rela-
tivistic (GR) fields. This minimal-coupling rule has been experimentally tested
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in the static case of a uniformly rotating superconducting ring, since it predicts
the existence of a London magnetic moment for the rotating superconductor,
in which magnetic flux is generated through the center of the ring due to its
rotational motion with respect to the local inertial frame at its center of mass.
The proportionality constant of the London moment effect is given by the ratio
of the e2A and the m2h terms, and thus by the charge-to-mass ratio e2/m2,
where m2 has been experimentally determined to be the vacuum value of the
Cooper pair rest mass, apart from a small discrepancy of the order of ten parts
per million, which has not yet been completely understood [7].

I propose that we can generalize the above time-independent minimal-coupling
Hamiltonian to quasi-static time-varying situations as follows:

H =
1

2m2eff
(p− e2A(t)−m2h(t))

2
, (6)

where A(t) and h(t) are the vector potentials associated with low-frequency
electromagnetic and gravitational radiation fields, for example. (This time-
dependent Hamiltonian can also of course describe time-varying tidal fields and
Lense-Thirring fields, as well as radiation fields.) Again, it is natural to choose
the radiation gauge, Eq. (4), in the description of these time-varying fields.
The physical meaning of h(t) is that it is the negative of the time-varying
three-velocity field vtest(x, y, z, t) of a system of noninteracting, locally freely-
falling classical test particles as seen by the observer in an inertial frame located
at the center of mass of the superconductor. At first, we shall treat both A(t)
and h(t) as classical fields, but shall treat the matter, i.e., the superconduc-
tor, quantum mechanically, in the standard semiclassical approximation. The
time-dependent Hamiltonian given by Eq. (6) is, I stress, only a “guessed”
form of the Hamiltonian, whose ultimate justification must be an experimental
one. In case of the time-dependent vector potential A(t), there have already
been many experiments which have justified this “guess,” but there have been
no experiments which have tested the new term involving h(t). However, one
justification for this new term is that in the static limit, this “guessed” Hamil-
tonian goes over naturally to the static minimal-coupling form, which, as we
have seen above, has been tested experimentally.

From Eq. (6), we see that the time-dependent generalization of the minimal-
coupling rule in QM is

p→ p− e2A(t) −m2h(t). (7)

It would be hard to believe that one is allowed to generalize A to A(t), but that
somehow one is not allowed to generalize h to h(t) for quasi-static time-varying
fields.

One important consequence that follows immediately from expanding the
square in Eq. (6) is that there exists a cross-term [8]

Hint =
1

2m2eff
{2e2m2A(t) ·h(t)} =

(
m2

m2eff

)
e2A(t) · h(t). (8)
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Note that Newton’s constant G does not enter here. The physical meaning of
this interaction Hamiltonian Hint is that there should exist a direct coupling
between electromagnetic and gravitational radiation mediated by the supercon-
ductor that involves the charge e2 as its coupling constant. Thus the strength
of this coupling is electromagnetic, and not gravitational, in its character. Fur-
thermore, the A · h form of Hint implies that there should exist a linear and
reciprocal coupling between these two radiation fields. This implies the possi-
bility that the superconductor can be used as a transducer between these two
forms of radiation, which can, in principle, convert power from one form of
radiation into the other, and vice versa, with equal efficiency.

We can see more clearly the physical significance of the interaction Hamilto-
nian Hint once we convert it into second quantized form and express it in terms
of the creation and annihilation operators for the positive frequency parts of
the two radiation fields, as in the theory of quantum optics, so that in the
rotating-wave approximation

Hint ∝ a†b+ b†a (9)

where the annihilation operator a and the creation operator a† of the quan-
tized excitations of the single classical mode of the plane-wave electromagnetic
radiation field corresponding to the amplitude A+ (see Eq. (13)), obey the
commutation relation [a, a†] = 1, and where the annihilation operator b and the
creation operator b† of the quantized excitations of the single classical mode of
the plane-wave gravitational radiation field corresponding to the amplitude h+

(see Eq. (14)), obey the commutation relation [b, b†] = 1. (This represents a
crude, first attempt at quantizing the gravitational field, which applies only in
the case of weak gravity and slow velocities.) The first term a†b then corre-
sponds to the process in which a graviton is annihilated and a photon is created
inside the superconductor, and similarly the second term b†a corresponds to the
reciprocal process, in which a photon is annihilated and a graviton is created
inside the superconductor. Energy is conserved by both of these processes.
Time-reversal symmetry, and hence reciprocity, is respected by this interaction
Hamiltonian.

Let us now introduce the purely quantum concept of wavefunction, in con-
junction with the quantum adiabatic theorem. To obtain the response of the
superconductor, we must make explicit use of the fact that the ground state
wavefunction of the system is unchanged (i.e., to use London’s term, “rigid”)
during the quasi-static time variations of both A(t) and h(t). The condition
for validity of the quantum adiabatic theorem here is that the frequency of the
perturbations A(t) and h(t) must be low enough compared with the BCS gap
frequency of the superconductor, so that no transitions are allowed out of the
BCS ground state of the system into any of the excited states of the system.
However, “low enough” can, in practice, still mean quite high frequencies, e.g.,
microwave frequencies in the case of high Tc superconductors, so that it becomes
practical for the superconductor to become comparable in size to a microwave
wavelength λ.
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Using the quantum adiabatic theorem, one obtains in first-order perturba-

tion theory the coupling energy ∆E
(1)
int of the superconductor in the simultaneous

presence of both A(t) and h(t) fields, which is given by

∆E
(1)
int =

(
m2

m2eff

)
〈ψ |e2A(t) · h(t)|ψ〉 =

(
m2

m2eff

)∫∫∫
dxdydz ψ∗(x, y, z)A(x, y, z, t) ·h(x, y, z, t)ψ(x, y, z) (10)

where

ψ(x, y, z) =
(
N/πr2

0d
)1/2

= constant (11)

is the Cooper-pair condensate wavefunction or Ginzburg-Landau order param-
eter of a homogeneous superconductor [9], the normalization condition having
been imposed that

∫∫∫
dxdydz ψ∗(x, y, z)ψ(x, y, z) = N, (12)

where N is the total number of Cooper pairs in the superconductor. Let us
assume that both A(t) and h(t) have the same (“+”) polarization of quadrupolar
radiation [10], and that both plane waves impinge on the slab of superconductor
at normal incidence upon its circular face; then in Cartesian coordinates,

A(t) = (A1(t), A2(t), A3(t)) =
1

2
(x,−y, 0)A+ cos(kz − ωt) (13)

h(t) = (h1(t), h2(t), h3(t)) =
1

2
(x,−y, 0)h+ cos(kz − ωt). (14)

One then finds that the time-averaged interaction or coupling energy in the
rotating-wave approximation between the electromagnetic and gravitational ra-
diation fields mediated by the superconductor is

∆E
(1)
int =

1

16

(
m2

m2eff

)
Ne2A+h+r

2
0. (15)

Note the presence of the factor N , which can be very large, since it can be on
the order of Avogadro’s number N0.

The calculation for the above coupling energy ∆E
(1)
int proceeds along the

same lines as that for the Meissner effect of the superconductor, which is based
on the diamagnetism term Hdia in the expansion of the same time-dependent
minimal-coupling Hamiltonian, Eq. (6), given by

Hdia =
1

2m2eff
{e2A(t) · e2A(t)} . (16)
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This leads to an energy shift of the system, which, in first-order perturbation
theory, again in the rotating-wave approximation, is given by

∆E
(1)
dia =

1

32m2eff
Ne2

2A
2
+r

2
0. (17)

Again, note the presence of the factor N , which can be on the order of Avo-
gadro’s number N0. We know from experiment that the size of this energy
shift is sufficiently large to cause a complete expulsion of the magnetic field
from the interior of the superconductor, i.e., a Meissner effect. Hence we ex-
pect to see a complete reflection of the electromagnetic wave from the interior of
the superconductor, apart from a thin surface layer of the order of the London
penetration depth. All forms of diamagnetism, including the Meissner effect,
are purely quantum effects.

Similarly, there is a “gravitodiamagnetic” term HGdia in the expansion of
the same minimal-coupling Hamiltonian given by

HGdia =
1

2m2eff
{m2h(t) ·m2h(t)} . (18)

This leads to a gravitodiamagnetic energy shift of the system given in first-order
perturbation theory in the rotating-wave approximation by

∆E
(1)
Gdia =

1

32m2eff
Nm2

2h
2
+r

2
0. (19)

3 The impedance of free space for gravitational

radiation

It is not enough merely to calculate the coupling energy arising from the inter-
action Hamiltonian given by Eq. (15). We must also compare how large this
coupling energy is with respect to the free-field energies of the uncoupled prob-
lem, in particular, that of the gravitational radiation, in order to see how big an
effect we expect to see in the gravitational sector. To this end, I introduce here
the concept of impedance matching, both between the superconductor and free
space in both forms of radiation, and also between the two kinds of waves inside
the superconductor viewed as a transducer. The impedance matching problem
determines the efficiency of the power transfer from the antenna to free space,
and from one kind of wave to the other. I therefore also introduce here the
concept of the impedance of free space ZG for a gravitational plane wave, in
analogy with the concept of the impedance of free space Z0 for an electromag-
netic plane wave (here SI units are more convenient to use than Gaussian cgs
units)

Z0 =
E

H
=

√
µ0

ε0
= 377 ohms, (20)
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where µ0 is the magnetic permeability of free space, and ε0 is the dielectric
permittivity of free space.

The physical meaning of the “impedance of free space” in the electromagnetic
case is that when a plane wave impinges on a large, but thin, resistive film at
normal incidence, due to this film’s ohmic losses, the wave can be substantially
absorbed and converted into heat if the resistance per square element of this
film is comparable to 377 ohms. In this case, we say that the electromagnetic
plane wave has been approximately “impedance-matched” into the film.

If, however, the resistance of the thin film is much lower than 377 ohms per
square, as is the case for a superconducting film, then the wave will be reflected
by the film. In this case, we say that the wave has been “shorted out” by
the superconducting film, and that therefore this film reflects electromagnetic
radiation like a mirror.

By contrast, if the resistance of a normal metallic film is much larger than
377 ohms per square, then the film is essentially transparent to the wave. As
a result, there will be almost perfect transmission.

The boundary value problem for Maxwell’s equations coupled to a thin resis-
tive film with a resistance per square element of Z0/2, yields a unique solution
that this is the condition for the maximum possible fractional absorption of
the wave energy by the film, which is 50%, along with 25% of the wave en-
ergy being transmitted, and the remaining 25% being reflected (see Appendix
A) [11]. Under such circumstances, we say that the film has been “optimally
impedance-matched” to the film. This result is valid no matter how thin the
“thin” film is.

The gravitomagnetic permeability µG of free space is [12][13]

µG =
16πG

c2
= 3.73× 10−26 m

kg
, (21)

i.e., µG is the coupling constant which couples the Lense-Thirring field to sources
of mass current density, in the gravitational analog of Ampere’s law for weak
gravity. From this I find that

ZG =

√
µG
εG

= µGc =
16πG

c
= 1.12× 10−17 m2

s · kg
, (22)

where the fact has been used that in GR both electromagnetic and gravitational
radiation plane waves propagate at the same speed

c =
1√
εGµG

=
1√
ε0µ0

= 3.00× 108 m

s
. (23)

Therefore, the gravitoelectric permittivity εG of free space is

εG =
1

16πG
= 2.98× 108 kg2

N ·m2
. (24)

Note that Newton’s constant G enters explicitly into the expression for ZG
(see Eq. (22)), and therefore that the impedance of free space for gravitational
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plane waves is an extremely small quantity. However, it is important to note
that although the impedance ZG is many orders of magnitude smaller than the
corresponding quantity Z0 for electromagnetic radiation, it is not strictly zero.
Since nondissipative quantum fluids, such as superfluids and superconductors,
can have strictly zero losses, they can behave like “short circuits” for gravita-
tional radiation. Thus we expect that quantum fluids, in contrast to classical
fluids, can behave like perfect mirrors for gravitational radiation. That ZG is
so small explains why it is so difficult to couple classical matter to gravitational
radiation. It is therefore natural to consider using nondissipative quantum
matter instead of dissipative classical matter for achieving an efficient coupling
to gravity waves.

By analogy with the electromagnetic case, the physical meaning of the
“impedance of free space” ZG is that when a gravitational plane wave impinges
on a large, but thin, viscous fluid film at normal incidence, due to this film’s dis-
sipative losses, the wave can be substantially absorbed and converted into heat,
if the dissipation per square element of this film is comparable to ZG. Again
in this case, we say that the gravitational plane wave has been approximately
“impedance-matched” into the film.

If, however, the dissipation of the thin film is much lower than ZG, as is the
case for nondissipative quantum fluids, such as a superconductor or a superfluid,
then the wave will be reflected by the film. In this case, in analogy with
the electromagnetic case, we say that the wave has been “shorted out” by the
superconducting or superfluid film, and that therefore the film should reflect
gravitational radiation like a mirror.

By contrast, if the dissipation of the film is much larger than ZG, as is
usually the case for classical matter, then the film is essentially transparent to
the wave, and there will be almost perfect transmission.

The same boundary value problem obtains for the gravitational Maxwell-
like equations coupled to a thin viscous fluid film with a dissipation per square
element of ZG/2, and yields the same unique solution that this is the condition
for the maximum possible fractional absorption of the wave energy by the film,
which is 50%, along with 25% of the wave energy being transmitted, and the
remaining 25% being reflected (see Appendix A). Under such circumstances,
we again say that the film has been “optimally impedance-matched” to the film.
Again, this result is valid no matter how thin the “thin” film is.

When the superconductor is viewed as a transducer, the conversion from
electromagnetic to gravitational wave energy, and vice versa, can be viewed as
an effective dissipation mechanism, where instead of being converted into heat,
one form of wave energy is converted into the other form, whenever impedance
matching is achieved within a thin layer inside the superconductor. As we
shall see, this occurs naturally since the electromagnetic wave impedance is
reduced exponentially in type II superconductors as the wave penetrates into
the superconductor, so that a layer is automatically reached in its interior where
the electromagnetic wave impedance is reduced to a level comparable to ZG.
Under such circumstances, which I shall call “natural impedance matching,” we
should expect efficient conversion from one form of wave energy to the other.
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For obtaining Z0, we recall that one starts from Maxwell’s equations

∇ ·D = +ρe (25)

∇×E = −∂B

∂t
(26)

∇ ·B = 0 (27)

∇×H = + je +
∂D

∂t
, (28)

where ρe is the electrical free charge density (here, the charge density of Cooper
pairs), and je is the electrical current density (due to Cooper pairs), D is the
displacement field, E is the electric field, B is the magnetic induction field,
and H is the magnetic field intensity. The constitutive relations (assuming an
isotropic medium) are

D = κeε0E (29)

B = κmµ0H (30)

je = σeE, (31)

where κe is the dielectric constant of the medium, κm is its relative permeability,
and σe is its electrical conductivity. We then convert Maxwell’s equations into
wave equations for free space in the usual way, and conclude that the speed of
electromagnetic waves in free space is c = (ε0µ0)−1/2, and that the impedance
of free space is Z0 = (µ0/ε0)1/2. The impedance-matching problem of a plane
wave impinging on a thin, resistive film is solved by using standard boundary
conditions in conjunction with the constitutive relation je = σeE (see Appendix
A).

Similarly, for weak gravity and slow matter, Maxwell-like equations have
been derived from Einstein’s field equations [13][14][15]. The gravitoelectric
field EG, which is identical to the local acceleration due to gravity g, is analogous
to the electric field E, and the gravitomagnetic field BG, which is identical to
the Lense-Thirring field, is analogous to the magnetic field B; they are related
to the vector potential h in the radiation gauge as follows:

g = −∂h

∂t
and BG= ∇× h, (32)

which correspond to the electromagnetic relations

E = −∂A

∂t
and B = ∇×A . (33)
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The physical meaning of g is that it is the three-acceleration of a local, freely-
falling test particle induced by the gravitational radiation, as seen by an observer
in a local inertial frame located at the center of mass of the superconductor. The
local three-acceleration g is the local time derivative of the local three-velocity
−h of this test particle, which is in a system of noninteracting, locally freely-
falling, classical test particles with a velocity field vtest(x, y, z, t) = −h(x, y, z, t)
as seen by the observer (see Eq. (32a)). Similarly, the physical meaning of the
gravitomagnetic field BG is that it is the local angular velocity of an inertial
frame centered on the same test particle, with respect to the observer’s inertial
frame, which is centered on the center-of-mass of the superconductor. Thus BG

is the Lense-Thirring field induced by the gravitational radiation.
The Maxwell-like equations for weak gravitational fields (upon setting the

PPN (“Parametrized Post-Newton”) parameters to be those of general relativ-
ity) are [14]

∇ ·DG = −ρG (34)

∇× g = −∂BG

∂t
(35)

∇ ·BG = 0 (36)

∇×HG=− jG +
∂DG

∂t
(37)

where ρG is the density of local rest mass in the local rest frame of the mat-
ter, and jG is the local rest-mass current density in this frame (in the case of
classical matter, jG = ρGv, where v is the coordinate three-velocity of the local
rest mass; in the quantum case, see Eq. (45)). Here HG is the gravitomagnetic
field intensity, and DG is the gravitodisplacement field. Since the forms of these
equations are identical to those of Maxwell’s equations, the same boundary con-
ditions follow from them, and therefore the same solutions for electromagnetic
problems carry over formally to the gravitational ones. These include the so-
lution for the optimal impedance-matching problem for a thin, dissipative film
(see Appendix A).

The constitutive relations (assuming an isotropic medium) analogous to
those in Maxwell’s theory are

DG = 4κGEεGg (38)

BG = κGMµGHG (39)

jG = −σGg (40)
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where εG is the gravitoelectric permittivity of free space given by Eq. (24),
µG is the gravitomagnetic permeability of free space given by Eq. (21), κGE is
the gravitoelectric dielectric constant of a medium, κGM is its gravitomagnetic
relative permeability, and σG is the gravitational analog of the electrical conduc-
tivity of the medium, whose magnitude is inversely proportional to its viscosity.
It is natural to choose to define the constitutive relation, Eq. (40), with a mi-
nus sign, so that for dissipative media, σG is always a positive quantity. The
factor of 4 on the right hand side of Eq. (38) implies that Newton’s law of uni-
versal gravitation emerges from Einstein’s theory of GR in the correspondence
principle limit of Newtonian gravity in free space.

The phenomenological parameters κGE, κGM , and σG must be determined
by experiment. Since there exist no negative masses which can give rise to a
gravitational analog of the polarization of the medium, we expect that at low
frequencies, κGM → 1. However, because of the possibility of large Meissner-
like effects such as in superconductors, κGM need not approach unity at low
frequencies, but can approach zero instead. Also, note that κGM can be spa-
tially inhomogeneous near the surface of a superconductor.

Again, converting the Maxwell-like equations for weak gravity into a wave
equation for free space in the standard way, we conclude that the speed of
gravitational waves in free space is c = (εGµG)−1/2, which is identical in GR to
the vacuum speed of light, and that the impedance of free space for gravitational
waves is ZG = (µG/εG)1/2, whose numerical value is given in Eq. (22).

It should be stressed here that although the above Maxwell-like equations
look formally identical to Maxwell’s, there is a basic physical difference between
gravity and electricity, which must not be overlooked. In electrostatics, the
existence of both signs of charges means that both repulsive and attractive
forces are possible, whereas in gravity, only positive signs of masses, and only
attractive gravitational forces between masses, are observed. One consequence
of this experimental fact is that whereas it is possible to construct Faraday
cages that completely screen out electrical forces, and hence electromagnetic
radiation fields, it is impossible to construct gravitational analogs of Faraday
cages that screen out ordinary gravitational forces, such as Earth’s gravity,
which are gravitoelectric in nature.

However, the gravitomagnetic force can be either repulsive or attractive in
sign, unlike the gravitoelectric force. For example, the gravitomagnetic force
between two parallel current-carrying pipes changes sign, when the direction of
the current flow is reversed in one of the pipes, according to the Ampere-like law
Eq. (37). Hence both signs of this kind of gravitational force are possible. One
consequence of this is that gravitomagnetic forces can cancel out, so that, unlike
gravitoelectric fields, gravitomagnetic fields can in principle be screened out of
the interiors of material bodies. A dramatic example of this is the complete
screening out of the Lense-Thirring field by superconductors in a Meissner-like
effect, i.e., the complete expulsion of the gravitomagnetic field from the interior
of these bodies, which is predicted in the next Section. Therefore the expulsion
of gravitational radiation fields by superconductors can also occur, and thus
mirrors for this kind of radiation, although counterintuitive, are not impossible.
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4 Ginzburg-Landau equation coupled to both
electromagnetic and gravitational radiation

A superconductor in the presence of the electromagnetic vector potential A(t)
alone is well described by the Ginzburg-Landau (G-L) equation for the complex
order parameter ψ, which in the adiabatic or quasi-static limit is given by [16]

1

2m2eff

(
~
i
∇− e2A(t)

)2

ψ + β|ψ|2ψ = −αψ. (41)

When A is time-independent, this equation has the same form as the time-
independent Schrödinger equation for a particle (i.e., a Cooper pair) with mass
m2eff and a charge e2 with an energy eigenvalue −α, except that there is an
extra nonlinear term whose coefficient is given by the coefficient β, which arises
at a microscopic level from the Coulomb interactions between Cooper pairs [16].
The values of these two phenomenological parameters must be determined by
experiment. There are two important length scales associated with the two
parameters α and β of this equation, which can be obtained by a dimensional
analysis of Eq. (41). The first is the coherence length

ξ =

√
~2

2m2eff |α|
, (42)

which is the length scale on which the condensate charge density e2|ψ|2 vanishes,
as one approaches the surface of the superconductor from its interior. The
second is the London penetration depth

λL =

√
~2

2m2effβ|ψ|2
→
√
ε0m2effc2

e2
2|ψ0|2

, (43)

which is the length scale on which an externally applied magnetic field B(t) =
∇×A(t) vanishes due to the Meissner effect, as one penetrates into the interior
of the superconductor away from its surface. Here e2|ψ0|2 is the condensate
charge density deep inside the superconductor, where it approaches a constant.

The G-L equation represents a mean-field theory of the superconductor at
the macroscopic level, which can be derived from the underlying microscopic
BCS theory [17]. The meaning of the complex order parameter ψ(x, y, z) is
that it is the Cooper-pair condensate wavefunction. The G-L theory is being
used here because it is more convenient than the BCS theory for calculating the
response of the superconductor to electromagnetic, and also to gravitational,
radiation.

I propose to generalize the Ginzburg-Landau equation to include gravita-
tional radiation fields arising from the gravitomagnetic vector potential h(t) by
the use of the minimal-coupling rule, Eq. (7), to the following equation:

1

2m2eff

(
~
i
∇− e2A(t) −m2h(t)

)2

ψ + β|ψ|2ψ = −αψ. (44)
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Again, the ultimate justification for this equation has to come from experiment.
With this equation, one can predict what happens at the interface between the
superconductor and the vacuum, when both kinds of radiation are impinging
on this surface at an arbitrary angle of incidence (see Figure 1). Note that
since there are still only two parameters α and β in this equation, there will
again be only the same two length scales ξ and λL that we had, before adding
the gravitational radiation term h(t). Since there are no other length scales
in this problem, we would expect that the gravitational radiation fields (which
are strongly coupled to the electromagnetic radiation fields through the cou-
pling Hamiltonian Hint ∝ A · h) should vanish on the same length scales as
the electromagnetic radiation fields as one penetrates into the interior of the
superconductor. Thus we would expect to see a Meissner-like expulsion of the
gravitational radiation fields from the superconductor, just like the expulsion of
electromagnetic radiation fields.

Both B(t) and BG(t) fields should vanish into the interior of the supercon-
ductor, since both A(t) and h(t) fields must vanish in the interior. Otherwise,
the single-valuedness of ψ would be violated. Suppose that A(t) did not vanish
deep inside the superconducting slab, which is topologically singly connected.
Then the nonintegrable phase factor exp

(
(ie2/~)

∮
A(t) · dl

)
would also not

vanish, which would lead to a violation of the single-valuedness of ψ. Simi-
larly, suppose that h(t) did not vanish. Then the nonintegrable phase factor
exp

(
(im2/~)

∮
h(t) · dl

)
would also not vanish, so that again there would be a

violation of the single-valuedness of ψ.
There exists much experimental evidence that the single-valuedness of ψ

is in fact not violated: for example, the quantization of the orbital angular
momentum of atoms and molecules in microscopic physics, and the quantization
of circulation in superfluid helium, and of flux in superconductors in macroscopic
physics. As a special case of the latter when the winding number is zero, the
Meissner effect is itself evidence for the validity of the principle of the single-
valuedness of ψ.

The A(t) and h(t) fields are coupled strongly to each other through the
e2A · h interaction Hamiltonian. Since the electromagnetic interaction is very
much stronger than the gravitational one, the exponential decay of A(t) on the
scale of the London penetration depth should govern the exponential decay of
the h(t) field. Thus both A(t) and h(t) fields decay exponentially with the same
length scale λL into the interior of the superconductor. This implies that both
electromagnetic and gravitational radiation fields will also be expelled from the
interior, so that a flat surface of this superconductor should behave like a plane
mirror for both electromagnetic and gravitational radiation.

The Cooper-pair current density j, which acts as the source in Ampere’s
law in both the Maxwell and the Maxwell-like equations, can be obtained in a
manner similar to that for the Schrödinger equation

j =
~

2im2eff
(ψ∗∇ψ − ψ∇ψ∗)− e2

m2eff
|ψ|2A− m2

m2eff
|ψ|2h . (45)

Note thar j is nonlinear in ψ, but linear in A and h. Near the surface of the
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superconductor, the gradient terms dominate, but far into the interior, the A
and the h terms dominate. Let us use j for calculating the sources for both
Maxwell’s equations for the electromagnetic fields, and also for the Maxwell-like
equations for the gravitational fields. The electrical current density is

je = e2j (46)

and the rest-mass current density is

jG = m2j. (47)

Also, the electrical free charge density is

ρe = e2|ψ|2 (48)

and the rest-mass density is

ρG = m2|ψ|2. (49)

I have not yet solved the generalized Ginzburg-Landau equation, Eq. (44),
coupled to both the Maxwell and Maxwell-like equations through these currents
and densities. These coupled equations are nonlinear in ψ, but are linear in A
and h for weak radiation fields. However, from dimensional considerations, I can
make the following remarks. The electric field E(t) should vanish exponentially
towards the interior of the superconductor on a length scale set by the coherence
length ξ, since the charge density ρe = e2|ψ|2 vanishes exponentially on this
length scale near the surface of the superconductor. Similarly, the magnetic field
B(t) should vanish exponentially towards the interior of the superconductor, but
on a different length scale set by the London penetration depth λL. Both fields
vanish exponentially, but on different length scales.

At first sight, it would seem that similar considerations would apply to both
the gravitational fields g(t) ≡ EG(t) and BG(t). However, since there ex-
ists only one sign of mass for gravity, the gravitoelectric field EG(t) cannot
be screened out, as can the electric field E(t). However, the gravitomagnetic
field BG(t) can be, indeed must be, screened out by quantum-mechanical mass
currents, in order to preserve the single-valuedness of ψ.

However, the behavior of the superconductor as an efficient mirror is no
guarantee that it should also be an efficient transducer from one type of radia-
tion to the other. For efficient power conversion, a good transducer impedance-
matching process from one kind of radiation to the other is also required.

The transducer impedance-matching process should happen naturally in
type II superconductors, where the electric field decays more quickly than the
magnetic field into the interior of the superconductor, since ξ < λL. For ex-
treme type II superconductors, such as the high-temperature superconductor
YBCO, ξ is much less than λL by over two orders of magnitude [18]. There-
fore, the wave impedance Z = E/H of the electromagnetic plane wave decreases
exponentially as a function of z, the distance from the surface into the interior
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of the superconductor, as

Z(z) =
E(z)

H(z)
= Z0 exp(−z/ξ + z/λL). (50)

The gravitational wave impedance ZG, however, behaves very differently, be-
cause of the absence of the screening of the gravitoelectric field, so that EG(z)
should be a constant independent of z near the surface, and therefore

ZG(z) =
EG(z)

HG(z)
= ZG exp(+z/λL). (51)

Thus the z-dependence of the ratio of the two kinds of wave impedances should
obey the exponential-decay law

Z(z)

ZG(z)
=
Z0

ZG
exp(−z/ξ). (52)

Let us convert the two impedances Z0 and ZG to the same units for the purposes
of comparison. To do so, let us express Z0 in the natural units of the quantum of
resistance R0 = h/e2, where e is the electron charge. Likewise, let us express ZG
in the corresponding natural units of the quantum of dissipation RG = h/m2,
where m is the electron mass. Thus we get the dimensionless ratio

Z(z)/R0

ZG(z)/RG
=

Z0/R0

ZG/RG
exp(−z/ξ) =

e2/4πε0

4Gm2
exp(−z/ξ). (53)

Let us define the “depth of natural impedance-matching” z0 as the depth where
this dimensionless ratio is unity, and thus where natural impedance matching
occurs. Thus I find that

z0 = ξ ln

(
e2/4πε0

4Gm2

)
≈ 97ξ. (54)

This result is a robust one, in the sense that the logarithm is very insensitive to
changes in numerical factors of the order of unity in its argument. From this it
follows that it is necessary to penetrate into the superconductor a distance of z0,
which is around a hundred coherence lengths ξ (the average value of ξ is around
16 Å in the case of YBCO), for this natural impedance-matching process to
occur. When this happens, an efficient transducer impedance-matching process
occurs automatically, and we expect the transducer power-conversion efficiency
from electromagnetic to gravitational radiation, and vice versa, should be of the
order of unity. The London penetration depth is around 2720 Å in the case of
YBCO, which is larger than the depth z0 ≈ 97ξ '1600 Å in this material, so
that the electromagnetic field energy has not yet decayed much at the natural
impedance-matching plane at z = z0, although it is mainly magnetic in character
at this depth inside the superconductor.

Of course, the Fresnel-like boundary-value problem for plane waves incident
on the surface of the superconductor at arbitrary incidence angles and arbitrary
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polarizations (see Figure 1) needs to be solved completely before this conclusion
can be confirmed. However, based on these crude dimensional and physical
arguments, the prospects for a simple, Hertz-like experiment testing these ideas
appear to be promising enough that I am presently performing this experiment
with Walt Fitelson. The schematic of this experiment is shown in Figure 2.
The results of this experiment will be reported elsewhere.

5 Conclusions

In addition to its fundamental interest as an experimental testing ground at
the intersection of QM and GR, superconductors can be used as antennas and
transducers for an efficient and reciprocal coupling of electromagnetic and grav-
itational radiation fields. A Hertz-like experiment is presently being performed
to test these ideas. If this experiment is successful, superconductors can serve
as the basis for practical devices in gravity radio communications, especially
in light of the fact that all classical matter, including the Earth, is essentially
completely transparent to gravitational radiation. An important follow-up as-
trophysical experiment would be to observe the cosmic microwave background
in gravitational radiation, as this would tell us much about the very early
Universe.

6 Appendix A: Optimal impedance matching of
a gravitational plane wave into a thin, dissi-

pative film

Let a gravitational plane wave given by Eq. (14) be normally incident onto a
thin, dissipative (i.e., viscous) fluid film. Let the thickness d of this film be very
thin compared to the gravitational analog of the skin depth (2/κGMµGσGω)1/2,
and to the wavelength λ. The incident fields calculated using Eqs. (32) (here
I shall use the notation EG instead of g) are

E
(i)
G = −1

2
(x,−y, 0)ωh+ sin(kz − ωt) (55)

H
(i)
G = − 1

2ZG
(y, x, 0)ωh+ sin(kz − ωt). (56)

Let ρ be the amplitude reflection coefficient for the gravitoelectric field; the
reflected fields from the film are

E
(r)
G = −ρ1

2
(x,−y, 0)ωh+ sin(kz − ωt) (57)

H
(r)
G = +ρ

1

2ZG
(y, x, 0)ωh+ sin(kz − ωt). (58)
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Similarly the transmitted fields on the far side of the film are

E
(t)
G = −τ 1

2
(x,−y, 0)ωh+ sin(kz − ωt) (59)

H
(t)
G = −τ 1

2ZG
(y, x, 0)ωh+ sin(kz − ωt), (60)

where τ is the amplitude tranmission coefficient. The Faraday-like law, Eq.
(35), and the Ampere-like law, Eq. (37), when applied to the tangential com-
ponents of the gravitoelectric and gravitomagnetic fields parallel to two appro-
priately chosen infinitesimal rectangular loops which straddle the thin film, lead
to two boundary conditions which yield the following two algebraic relations:

1 + ρ− τ = 0 (61)

1− ρ− τ = (ZGσGd) τ ≡ ζτ (62)

where we have used the constitutive relation jG = −σGEG (Eq. (40)) to de-
termine the current enclosed by the infinitesimal rectangular loop in the case
of the Ampere-like law, and where we have defined the positive, dimensionless
quantity ζ ≡ ZGσGd. The solutions are

τ =
2

ζ + 2
and ρ = − ζ

ζ + 2
. (63)

Using the conservation of energy, we can calculate that the absorptivity A,
i.e., the fraction of power absorbed from the incident gravitational wave and
converted into heat, is

A = 1− |τ |2 − |ρ|2 =
4ζ

(ζ + 2)2
. (64)

To find the condition for maximum absorption, we calculate the derivative
dA/dζ and set it equal to zero. The unique solution for maximum absorp-
tivity occurs at

ζ = 2, where A =
1

2
and |τ |2 =

1

4
and |ρ|2 =

1

4
. (65)

Thus the optimal impedance-matching condition into the thin, dissipative film,
i.e., when there exists the maximum rate of conversion of gravitational wave
energy into heat, occurs when the dissipation in the fluid film is ZG/2 per square
element. At this optimum condition, 50% of the gravitational wave energy will
be converted into heat, 25% will be transmitted, and 25% will be reflected. This
is true independent of the thickness d of the film, when the film is very thin.
This solution is formally analogous to that of the optimal impedance-matching
problem of an electromagnetic plane wave into a thin ohmic film [11].
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Figure 1: Superconductor as a naturally impedance-matched transducer be-
tween electromagnetic (EM) and gravitational (GR) radiation. (a) A quadrupo-
lar EM plane wave is converted upon reflection into a quadrupolar GR plane
wave. (b) The reciprocal (or time-reversed) process in which a quadrupolar
GR plane wave is converted upon reflection into a quadrupolar EM plane wave.
Both EM and GR waves possess the same quadrupolar polarization pattern (see
Eqs. (13) and (14)). Estimates of the transducer power-conversion efficiency
based on Eq. (54) yield efficiencies of the order of unity for extreme type II
superconductors such as YBCO.

21



SuperconductorSuperconductor B

GR wave

Microwave

Source

Microwave

Detector

Double Faraday Cages

Emitter

Receiver

Superconductor A

EM wave

EM wave

Figure 2: Schematic of a simple, Hertz-like experiment, in which gravitational
radiation at 12 GHz is emitted and received using two superconductors. The
“Microwave Source” generates quadrupolar electromagnetic radiation at 12 GHz
(“EM wave”), which impinges on Superconductor A (a 1 inch diameter piece
of YBCO, which is placed inside a dielectric Dewar containing liquid nitrogen),
and is converted upon reflection into quadrupolar gravitational radiation (“GR
wave”). The GR wave, but not the EM wave, passes through the “Double
Faraday Cages,” i.e., two doubly-nested normal-metal Faraday cages. In the
far field of Superconductor A, Superconductor B (also a 1 inch diameter piece
of YBCO inside a dielectric Dewar filled with liquid nitrogen) reconverts upon
reflection the quadrupolar GR wave back into a quadrupolar EM wave at 12
GHz, which is then detected by the “Microwave Detector.” The GR wave,
and hence the signal at the microwave detector, should disappear once either
superconductor is warmed up above its transition temperature (90 K), i.e., after
the liquid nitrogen boils away in either Dewar.
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