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Abstract

“Life” and its “evolution” are fundamental concepts that have not yet
been formulated in precise mathematical terms, although some efforts
in this direction have been made. We suggest a possible point of de-
parture for a mathematical definition of “life.” This definition is based
on the computer and is closely related to recent analyses of “inductive
inference” and “randomness.” A living being is a unity; it is simpler
to view a living organism as a whole than as the sum of its parts. If
we want to compute a complete description of the region of space-time
that is a living being, the program will be smaller in size if the calcula-
tion is done all together, than if it is done by independently calculating
descriptions of parts of the region and then putting them together.
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1. The Problem

“Life” and its “evolution” from the lifeless are fundamental concepts of
science. According to Darwin and his followers, we can expect living
organisms to evolve under very general conditions. Yet this theory
has never been formulated in precise mathematical terms. Supposing
Darwin is right, it should be possible to formulate a general definition
of “life” and to prove that under certain conditions we can expect it
to “evolve.” If mathematics can be made out of Darwin, then we will
have added something basic to mathematics; while if it cannot, then
Darwin must be wrong, and life remains a miracle which has not been
explained by science.

The point is that the view that life has spontaneously evolved, and
the very concept of life itself, are very general concepts, which it should
be possible to study without getting involved in, for example, the de-
tails of quantum chemistry. We can idealize the laws of physics and
simplify them and make them complete, and then study the resulting
universe. It is necessary to do two things in order to study the evolution
of life within our model universe. First of all, we must define “life,” we
must characterize a living organism in a precise fashion. At the same
time it should become clear what the complexity of an organism is, and
how to distinguish primitive forms of life from advanced forms. Then
we must study our universe in the light of the definition. Will an evo-
lutionary process occur? What is the expected time for a certain level
of complexity to be reached? Or can we show that life will probably
not evolve?

2. Previous Work

Von Neumann devoted much attention to the analysis of fundamental
biological questions from a mathematical point of view.1 He considered

1See in particular his fifth lecture delivered at the University of Illinois in De-
cember of 1949, “Re-evaluation of the problem of complicated automata—Problems
of hierarchy and evolution,” and his unfinished The Theory of Automata: Con-
struction, Reproduction, Homogeneity. Both are posthumously published in von
Neumann (1966).
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a universe consisting of an infinite plane divided into squares. Time
is quantized, and at any moment each square is in one of 29 states.
The state of a square at any time depends only on its previous state
and the previous states of its four neighboring squares. The universe
is homogeneous; the state transitions of all squares are governed by
the same law. It is a deterministic universe. Von Neumann showed
that a self-reproducing general-purpose computer can exist in his model
universe.

A large amount of work on these questions has been done since von
Neumann’s initial investigations, and a complete bibliography would
be quite lengthy. We may mention Moore (1962), Arbib (1966,1967),
and Codd (1968).

The point of departure of all this work has been the identification of
“life” with “self-reproduction,” and this identification has both helped
and hindered. It has helped, because it has not allowed fundamental
conceptual difficulties to tie up work, but has instead permitted much
that is very interesting to be accomplished. But it has hindered be-
cause, in the end, these fundamental difficulties must be faced. At
present the problem has evidenced itself as a question of “good taste.”
As von Neumann remarks,2 good taste is required in building one’s
universe. If its elementary parts are assumed to be very powerful, self-
reproduction is immediate. Arbib (1966) is an intermediate case.

What is the relation between self-reproduction and life? A man may
be sterile, but no one would doubt he is alive. Children are not identical
to their parents. Self-reproduction is not exact; if it were, evolution
would be impossible. What’s more, a crystal reproduces itself, yet we
would not consider it to have much life. As von Neumann comments,3

the matter is the other way around. We can deduce self-reproduction
as a property which must be possessed by many living beings, if we ask
ourselves what kinds of living beings are likely to be around. Obviously,
a species that did not reproduce would die out. Thus, if we ask what
kinds of living organisms are likely to evolve, we can draw conclusions
concerning self-reproduction.

2See pages 76–77 of von Neumann (1966).
3See page 78 of von Neumann (1966).
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3. Simplicity and Complexity

“Complexity” is a concept whose importance and vagueness von Neu-
mann emphasized many times in his lectures.4 Due to the work of
Solomonoff, Kolmogorov, Chaitin, Martin-Löf, Willis, and Loveland,
we now understand this concept a great deal better than it was un-
derstood while von Neumann worked. Obviously, to understand the
evolution of the complexity of living beings from primitive, simple life
to today’s very complex organisms, we need to make precise a mea-
sure of complexity. But it also seems that perhaps a precise concept
of complexity will enable us to define “living organism” in an exact
and general fashion. Before suggesting the manner in which this may
perhaps be done, we shall review the recent developments which have
converted “simplicity” and “complexity” into precise concepts.

We start by summarizing Solomonoff’s work.5 Solomonoff proposes
the following model of the predicament of the scientist. A scientist is
continually observing increasingly larger initial segments of an infinite
sequence of 0’s and 1’s. This is his experimental data. He tries to
find computer programs which compute infinite binary sequences which
begin with the observed sequence. These are his theories. In order
to predict his future observations, he could use any of the theories.
But there will always be one theory that predicts that all succeeding
observations will be 1’s, as well as others that take more account of the
previous observations. Which of the infinitely many theories should he
use to make the prediction? According to Solomonoff, the principle
that the simplest theory is the best should guide him.6 What is the
simplicity of a theory in the present context? It is the size of the
computer program. Larger computer programs embody more complex
theories, and smaller programs embody simpler theories.

Willis has further studied the above proposal, and also has intro-
duced the idea of a hierarchy of finite approximations to it. To my

4See especially pages 78–80 of von Neumann (1966).
5The earliest generally available appearance in print of Solomonoff’s ideas of

which we are aware is Minsky’s summary of them on pages 41–43 of Minsky (1962).
A more recent reference is Solomonoff (1964).

6Solomonoff actually proposes weighing together all the theories into the predic-
tion, giving the simplest theories the largest weight.
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knowledge, however, the success which predictions made on this basis
will have has not been made completely clear.

We must discuss a more technical aspect of Solomonoff’s work. He
realized that the simplicity of theories, and thus also the predictions,
will depend on the computer which one is using. Let us consider only
computers whose programs are finite binary sequences, and measure
the size of a binary sequence by its length. Let us denote by C(T ) the
complexity of a theory T . By definition, C(T ) is the size of the smallest
program which makes our computer C compute T . Solomonoff showed
that there are “optimal” binary computers C that have the property
that for any other binary computer C ′, C(T ) ≤ C ′(T ) + d, for all T .
Here d is a constant that depends on C and C ′, not on T . Thus,
these are the most efficient binary computers, for their programs are
shortest. Any two of these optimal binary computers C1 and C2 result
in almost the same complexity measure, for from C1(T ) ≤ C2(T ) + d12

and C2(T ) ≤ C1(T ) + d21, it follows that the difference between C1(T )
and C2(T ) is bounded. The optimal binary computers are transparent
theoretically, they are enormously convenient from the technical point
of view. What’s more, their optimality makes them a very natural
choice.7 Kolmogorov and Chaitin later independently hit upon the
same kind of computer in their search for a suitable computer upon
which to base a definition of “randomness.”

However, the naturalness and technical convenience of the Solo-
monoff approach should not blind us to the fact that it is by no means
the only possible one. Chaitin first based his definition of randomness
on Turing machines, taking as the complexity measure the number
of states in the machine, and he later used bounded-transfer Turing
machines. Although these computers are quite different, they lead to
similar definitions of randomness. Later it became clear that using
the usual 3-tape-symbol Turing machine and taking its size to be the
number of states leads to a complexity measure C3(T ) which is asymp-
totically just a Solomonoff measure C(T ) with its scale changed: C(T )
is asymptotic to 2C3(T ) log2 C3(T ). It appears that people interested
in computers may still study other complexity measures, but to apply

7Solomonoff’s approach to the size of programs has been extended in Chaitin
(1969a) to the speed of programs.
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these concepts of simplicity/complexity it is at present most convenient
to use Solomonoff measures.

We now turn to Kolmogorov’s and Chaitin’s proposed definition of
randomness or patternlessness. Let us consider once more the scientist
confronted by experimental data, a long binary sequence. This time
he in not interested in predicting future observations, but only in de-
termining if there is a pattern in his observations, if there is a simple
theory that explains them. If he found a way of compressing his ob-
servations into a short computer program which makes the computer
calculate them, he would say that the sequence follows a law, that it
has pattern. But if there is no short program, then the sequence has no
pattern—it is random. That is to say, the complexity C(S) of a finite
binary sequence S is the size of the smallest program which makes the
computer calculate it. Those binary sequences S of a given length n
for which C(S) is greatest are the most complex binary sequences of
length n, the random or patternless ones. This is a general formulation
of the definition. If we use one of Solomonoff’s optimal binary com-
puters, this definition becomes even clearer. Most binary sequences
of any given length n require programs of about length n. These are
the patternless or random sequences. Those binary sequences which
can be compressed into programs appreciably shorter than themselves
are the sequences which have pattern. Chaitin and Martin-Löf have
studied the statistical properties of these sequences, and Loveland has
compared several variants of the definition.

This completes our summary of the new rigorous meaning which
has been given to simplicity/complexity—the complexity of something
is the size of the smallest program which computes it or a complete
description of it. Simpler things require smaller programs. We have
emphasized here the relation between these concepts and the philos-
ophy of the scientific method. In the theory of computing the word
“complexity” is usually applied to the speed of programs or the amount
of auxiliary storage they need for scratch-work. These are completely
different meanings of complexity. When one speaks of a simple scien-
tific theory, one refers to the fact that few arbitrary choices have been
made in specifying the theoretical structure, not to the rapidity with
which predictions can be made.
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4. What is Life?

Let us once again consider a scientist in a hypothetical situation. He
wishes to understand a universe very different from his own which he
has been observing. As he observes it, he comes eventually to distin-
guish certain objects. These are highly interdependent regions of the
universe he is observing, so much so, that he comes to view them as
wholes. Unlike a gas, which consists of independent particles that do
not interact, these regions of the universe are unities, and for this reason
he has distinguished them as single entities.

We believe that the most fundamental property of living organisms
is the enormous interdependence between their components. A living
being is a unity; it is much simpler to view it as a whole than as
the sum of parts. That is to say, if we want to compute a complete
description of a region of space-time that is a living being, the program
will be smaller in size if the calculation is done all together, than if it
is done by independently calculating descriptions of parts of the region
and then putting them together. What is the complexity of a living
being, how can we distinguish primitive life from complex forms? The
interdependence in a primitive unicellular organism is far less than that
in a human being.

A living being is indeed a unity. All the atoms in it cooperate and
work together. If Mr. Smith is afraid of missing the train to his office,
all his incredibly many molecules, all his organs, all his cells, will be
cooperating so that he finishes breakfast quickly and runs to the train
station. If you cut the leg of an animal, all of it will cooperate to escape
from you, or to attack you and scare you away, in order to protect its
leg. Later the wound will heal. How different from what happens if you
cut the leg of a table. The whole table will neither come to the defense
of its leg, nor will it help it to heal. In the more intelligent living
creatures, there is also a very great deal of interdependence between
an animal’s past experience and its present behavior; that is to say,
it learns, its behavior changes with time depending on its experiences.
Such enormous interdependence must be a monstrously rare occurrence
in a universe, unless it has evolved gradually.

In summary, the case is the whole versus the sum of its parts. If
both are equally complex, the parts are independent (do not interact).



8 G. J. Chaitin

If the whole is very much simpler than the sum of its parts, we have
the interdependence that characterizes a living being.8 Note finally
that we have introduced something new into the study of the size of
programs (= complexity). Before we compared the sizes of programs
that calculate different things. Now we are interested in comparing
the sizes of programs that calculate the same things in different ways.
That is to say, the method by which a calculation is done is now of
importance to us; in the previous section it was not.

5. Numerical Examples

In this paper, unfortunately, we can only suggest a possible point of
departure for a mathematical definition of life. A great amount of
work must be done; it is not even clear what is the formal mathemat-
ical counterpart to the informal definition of the previous section. A
possibility is sketched here.

Consider a computer C1 which accepts programs P which are binary
sequences consisting of a number of subsequences B, C, P1, . . . , Pk, A.

B, the leftmost subsequence, is a program for breaking the remain-
der of P into C, P1, . . . , Pk, and A. B is self-describing; it starts with a
binary sequence which results from writing the length of B in base-two
notation, doubling each of its bits, and then placing a pair of unequal
bits at the right end. Also, B is not allowed to see whether any of the
remaining bits of P are 0’s or 1’s, only to separate them into groups.9

C is the description of a computer C2. For example, C2 could be
one of Solomonoff’s optimal binary computers, or a computer which
emits the program without processing it.

P1, . . . , Pk are programs which are processed by k different copies
of the computer C2. R1, . . . , Rk are the resulting outputs. These out-
puts would be regions of space-time, a space-time which, like von Neu-
mann’s, has been cut up into little cubes with a finite number of states.

A is a program for adding together R1, . . . , Rk to produce R, a single
region of space-time. A merely juxtaposes the intermediate results

8The whole cannot be more complex than the sum of its parts, because one of
the ways of looking at it is as the sum of its parts, and this bounds its complexity.

9The awkwardness of this part of the definition is apparently its chief defect.
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R1, . . . , Rk (perhaps with some overlapping); it is not allowed to change
any of the intermediate results. In the examples below, we shall only
compute regions R which are one-dimensional strings of 0’s and 1’s, so
that A need only indicate that R is the concatenation of R1, . . . , Rk, in
that order.

R is the output of the computer C1 produced by processing the
program P .

We now define a family of complexity measures C(d, R), the com-
plexity of a region R of space-time when it is viewed as the sum of
independent regions of diameter not greater than d. C(d, R) is the
length of the smallest program P which makes the computer C1 output
R, among all those P such that the intermediate results R1 to Rk are
all less than or equal to d in diameter. C(d, R) where d equals the di-
ameter of R is to within a bounded difference just the usual Solomonoff
complexity measure. But as d decreases, we may be forced to forget
any patterns in R that are more than d in diameter, and the complexity
C(d, R) increases.

We present below a table with four examples. In each of the four
cases, R is a 1-dimensional region, a binary sequence of length n. R1

is a random binary sequence of length n (“gas”). R2 consists of n
repetitions of 1 (“crystal”). The left half of R3 is a random binary
sequence of length n/2. The right half of R3 is produced by rotating the
left half about R3’s midpoint (“bilateral symmetry”). R4 consists of two
identical copies of a random binary sequence of length n/2 (“twins”).

C(d, R) = R = R1 R = R2 R = R3 R = R4

approx. ? “gas” “crystal” “bilateral “twins”
symmetry”

d = n n log2 n n/2 n/2
Note 1

d = n/k
(k > 1 fixed, n k log2 n n− (n/2k) n
n large) Notes 1,2 Note 2 Note 2
d = 1 n n n n

Note 1. This supposes that n is represented in base-two notation
by a random binary sequence. These values are too high in those rare
cases where this is not true.
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Note 2. These are conjectured values. We can only show that
C(d, R) is approximately less than or equal to these values.

Bibliography

• Arbib, M. A. (1962). “Simple self-reproducing automata,” Infor-
mation and Control.

• Arbib, M. A. (1967). “Automata theory and development: Part
1,” Journal of Theoretical Biology.

• Arbib, M. A. “Self-reproducing automata—some implications for
theoretical biology.”

• Biological Science Curriculum Study. (1968). Biological Science:
Molecules to Man, Houghton Mifflin Co.

• Chaitin, G. J. (1966). “On the length of programs for computing
finite binary sequences,” Journal of the Association for Comput-
ing Machinery.

• Chaitin, G. J. (1969a). “On the length of programs for computing
finite binary sequences: Statistical considerations,” ibid.

• Chaitin, G. J. (1969b). “On the simplicity and speed of programs
for computing infinite sets of natural numbers,” ibid.

• Chaitin, G. J. (1970). “On the difficulty of computations,” IEEE
Transactions on Information Theory.

• Codd, E. F. (1968). Cellular Automata. Academic Press.

• Kolmogorov, A. N. (1965). “Three approaches to the definition
of the concept ‘amount of information’,” Problemy Peredachi In-
formatsii.

• Kolmogorov, A. N. (1968). “Logical basis for information the-
ory and probability theory,” IEEE Transactions on Information
Theory.



To a Mathematical Definition of “Life” 11

• Loveland, D. W. “A variant of the Kolmogorov concept of com-
plexity,” report 69-4, Math. Dept., Carnegie-Mellon University.

• Loveland, D. W. (1969). “On minimal program complexity mea-
sures,” Conference Record of the ACM Symposium on Theory of
Computing, May 1969.
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