
ALGORITHMIC ENTROPY
OF SETS

Computers & Mathematics with

Applications 2 (1976), pp. 233–245

Gregory J. Chaitin
IBM Thomas J. Watson Research Center

Yorktown Heights, NY 10598, U.S.A.

Abstract

In a previous paper a theory of program size formally identical to infor-
mation theory was developed. The entropy of an individual finite object
was defined to be the size in bits of the smallest program for calculating
it. It was shown that this is − log2 of the probability that the object
is obtained by means of a program whose successive bits are chosen by
flipping an unbiased coin. Here a theory of the entropy of recursively
enumerable sets of objects is proposed which includes the previous the-
ory as the special case of sets having a single element. The primary
concept in the generalized theory is the probability that a computing
machine enumerates a given set when its program is manufactured by
coin flipping. The entropy of a set is defined to be − log2 of this prob-
ability.

1

2 G. J. Chaitin

1. Introduction

In a classical paper on computability by probabilistic machines [1], de
Leeuw et al. showed that if a machine with a random element can
enumerate a specific set of natural numbers with positive probability,
then there is a deterministic machine that also enumerates this set. We
propose to throw further light on this matter by bringing into play the
concepts of algorithmic information theory [2,3].

As in [3], we require a computing machine to read the successive
bits of its program from a semi-infinite tape that has been filled with
0’s and 1’s by flipping an unbiased coin, and to decide by itself where
to stop reading the program, for there is no endmarker. In [3] this
convention has the important consequence that a program can be built
up from subroutines by concatenating them.

In this paper we turn from finite computations to unending com-
putations. The computer is used to enumerate a set of objects instead
of a single one. An important difference between this paper and [3] is
that here it is possible for the machine to read the entire program tape,
so that in a sense infinite programs are permitted. However, following
[1] it is better to think of these as cases in which a nondeterministic
machine uses coin-flipping infinitely often.

Here, as in [3], we pick a universal computer that makes the prob-
ability of obtaining any given machine output as high as possible.

We are thus led to define three concepts: P (A), the probability that
the standard machine enumerates the set A, which may be called the
algorithmic probability of the set A; H(A), the entropy of the set A,
which is − log2 of P (A); and the amount of information that must be
specified to enumerate A, denoted I(A), which is the size in bits of the
smallest program for A. In other words, I(A) is the least number n such
that for some program tape contents the standard machine enumerates
the set A and in the process of doing so reads precisely n bits of the
program tape.

One may also wish to use the standard machine to simultaneously
enumerate two sets A and B, and this leads to the joint concepts
P (A, B), H(A, B), and I(A, B). In [3] programs could be concatenated,
and this fact carries over here to programs that enumerate singleton sets
(i.e. sets with a single element). What about arbitrary sets? Programs

Algorithmic Entropy of Sets 3

that enumerate arbitrary sets can be merged by interweaving their bits
in the order that they are read when running at the same time, that is,
in parallel. This implies that the joint probability P (A, B) is not less
than the product of the individual probabilities P (A) and P (B), from
which it is easy to show that H has all the formal properties of the
entropy concept of classical information theory [4]. This also implies
that I(A, B) is not greater than the sum of I(A) and I(B).

The purpose of this paper is to propose this new approach and to
determine what is the number of sets A that have probability P (A)
greater than 2−n, in other words, that have entropy H(A) less than
n. It must be emphasized that we do not present a complete theory.
For example, the relationship between H(A) and I(A) requires further
study. In [3] we proved that the difference between H(A) and I(A) is
bounded for singleton sets A, but we shall show that even for finite A
this is no longer the case.

2. Definitions and Their Elementary Pro-

perties

The formal definition of computing machine that we use is the Tur-
ing machine. However, we have made a few changes in the standard
definition [5, pp. 13–16].

Our Turing machines have three tapes: a program tape, a work tape
and an output tape. The program tape is only infinite to the right. It
can be read by the machine and it can be shifted to the left. Each
square of the program tape contains a 0 or a 1. The program tape is
initially positioned at its leftmost square. The work tape is infinite in
both directions, can be read, written and erased, and can be shifted
in either direction. Each of its squares may contain a blank, a 0, or a
1. Initially all squares are blank. The output tape is infinite in both
directions and it can be written on and shifted to the left. Each square
may contain a blank or a $. Initially all squares are blank.

A Turing machine with n states, the first of which is its initial state,
is defined in a table with 6n entries which is consulted each machine
cycle. Each entry corresponds to one of the 6 possible contents of the

4 G. J. Chaitin

2 squares being read, and to one of the n states. All entries must be
present, and each specifies an action to be performed and the next state.
There are 8 possible actions: program tape left, output tape left, work
tape left/right, write blank/0/1 on work tape and write $ on output
tape.

Each way of filling this 6 × n table produces a different n-state
Turing machine M . We imagine M to be equipped with a clock that
starts with time 1 and advances one unit each machine cycle. We call
a unit of time a quantum. Starting at its initial state M carries out
an unending computation, in the course of which it may read all or
part of the program tape. The output from this computation is a set
of natural numbers A. n is in A iff a $ is written by M on the output
tape that is separated by exactly n blank squares from the previous $
on the tape. The time at which M outputs n is defined to be the clock
reading when two $’s separated by n blanks appear on the output tape
for the first time.

Let p be a finite binary sequence (henceforth string) or an infinite
binary sequence (henceforth sequence). M(p) denotes the set of natu-
ral numbers output (enumerated) by M with p as the contents of the
program tape if p is a sequence, and with p written at the beginning
of the program tape if p is a string. M(p) is always defined if p is a
sequence, but if p is a string and M reads beyond the end of p, then
M(p) is undefined. However, instead of saying that M(p) is undefined,
we shall say that M(p) halts. Thus for any string p, M(p) is either
defined or halts. If M(p) halts, the clock reading when M reads past
the end of p is said to be the time at which M(p) halts.

Definition.

• PM(A) is the probability that M(p) = A if each bit of the se-
quence p is obtained by a separate toss of an unbiased coin. In
other words, PM(A) is the probability that a program tape pro-
duced by coin flipping makes M enumerate A.

• HM(A) = − log2 PM(A) (= ∞ if PM(A) = 0).

• IM(A) is the number of bits in the smallest string p such that
M(p) = A (= ∞ if no such p exists).

Algorithmic Entropy of Sets 5

We now pick a particular universal Turing machine U having the
ability to simulate any other machine as the standard one for use
throughout this paper. U has the property that for each M there is a
string %M such that for all sequences p, U(%Mp) = M(p) and U reads
exactly as much of p as M does. To be more precise %M = 0g1, where
g is the Gödel number for M . That is to say, g is the position of M in
a standard list of all possible Turing machine defining tables.

Definition.

• P (A) = PU(A) is the algorithmic probability of the set A.

• H(A) = HU(A) is the algorithmic entropy of the set A.

• I(A) = IU(A) is the algorithmic information of the set A.

The qualification “algorithmic” is usually omitted below.
We say that a string or sequence p is a program for A if U(p) = A.

If U(p) = A and p is a string of I(A) bits, then p is said to be a
minimal-size program for A. The recursively enumerable (r.e.) sets are
defined to be those sets of natural numbers A for which I(A) < ∞.
(This is equivalent to the standard definition [5, p. 58].) As there are
nondenumerably many sets of natural numbers and only denumerably
many r.e. sets, most A have I(A) = ∞.

The following theorem, whose proof is immediate, shows why U
is a good machine to use. First some notation must be explained.
f(x) � g(x) means that ∃c ∀x f(x) ≤ cg(x). f(x) � g(x) means
that g(x) � f(x). And f(x) � g(x) means that f(x) � g(x) and
f(x) � g(x). O(f(x)) denotes an F (x) with the property that there
are constants c1 and c2 such that for all x, |F (x)| ≤ |c1f(x)| + |c2|,
where f(x) is to be replaced by 0 if it is undefined for a particular
value of x.

Theorem 1. P (A) � PM(A), H(A) ≤ HM(A) + O(1), and I(A) ≤
IM(A) + O(1).

Definition.

• A join B = {2n : n ∈ A}∪{2n+1 : n ∈ B}. [5, pp. 81, 168]. Enu-
merating A join B is equivalent to simultaneously enumerating A
and B.

6 G. J. Chaitin

• P (A, B) = P (A join B) (joint probability)

• H(A, B) = H(A join B) (joint entropy)

• I(A, B) = I(A join B) (joint information)

• P (A/B) = P (A, B)/P (B) (conditional probability)

• H(A/B) = − log2 P (A/B) = H(A, B)−H(B)
(conditional entropy)

• P (A : B) = P (A)P (B)/P (A, B) (mutual probability)

• H(A : B) = − log2 P (A : B) = H(A) + H(B)−H(A, B)
(mutual entropy).

Theorem 2.

(a) P (A) ≥ 2I(A)

(b) H(A) ≤ I(A)

(c) For singleton A, H(A) = I(A) + O(1).

(d) H(A) < ∞ implies I(A) < ∞.

Proof. (a) and (b) are immediate; (c) is Theorem 3.5(b) [3]; (d)
follows from Theorem 2 [1].

Theorem 3.

(a) P (A, B) � P (B, A)

(b) P (A, A) � P (A)

(c) P (A, ∅) � P (A)

(d) P (A/A) � 1

(e) P (A/∅) � P (A)

(f) P (A, B) � P (A)P (B)

(g) P (A/B) � P (A)

Algorithmic Entropy of Sets 7

(h)
∑

A P (A, B) � P (B)

(i) P (A, B) � P (B)

(j)
∑

A P (A/B) � 1.

Proof. The proof is straightforward. For example, (f) was shown in
Section 1. And (h) follows from the fact that there is a % = 0g1 such
that n ∈ U(%p) iff 2n + 1 ∈ U(p). Thus P (B) ≥ 2−|%|

∑
A P (A, B),

which taken together with (b) yields (h). Here, and henceforth, the
absolute value |s| of a string s signifies the number of bits in s.

The remainder of the proof is omitted.
Theorem 4.

(a) H(A, B) = H(B, A) + O(1)

(b) H(A, A) = H(A) + O(1)

(c) H(A, ∅) = H(A) + O(1)

(d) H(A/A) = O(1)

(e) H(A/∅) = H(A) + O(1)

(f) H(A, B) ≤ H(A) + H(B) + O(1)

(g) H(A/B) ≤ H(A) + O(1)

(h) H(A) ≤ H(A, B) + O(1)

(i) H(A : ∅) = O(1)

(j) H(A : A) = H(A) + O(1)

(k) H(A : B) = H(B : A) + O(1)

(l) H(A : B) = H(A)−H(A/B) + O(1).

Theorem 5.

(a) I(A, B) = I(B, A) + O(1)

(b) I(A, A) = I(A) + O(1)

8 G. J. Chaitin

(c) I(A, B) ≤ I(A) + I(B) + O(1)

(d) I(A) ≤ I(A, B) + O(1)

(e) I(A) = I(A, {n : n < I(A)}) + O(1).

The proofs of Theorems 4 and 5 are straightforward and are omitted.

2′. The Oracle Machine U′

In order to study P , H , and I, which are defined in terms of U , we
shall actually need to study a more powerful machine called U ′, which,
unlike U , could never actually be built. U ′ is almost identical to U , but
it cannot be built because it contains one additional feature, an oracle
that gives U ′ yes/no answers to specific questions of the form “Does
U(p) halt?” U ′ can ask the oracle such questions whenever it likes.
An oracle is needed because of a famous theorem on the undecidability
of the halting problem [5, pp. 24–26], which states that there is no
algorithm for answering these questions. U ′ is a special case of the
general concept of relative recursiveness [5, pp. 128–134].

As a guide to intuition it should be stated that the properties of U ′

are precisely analogous to those of U ; one simply imagines a universe
exactly like ours except that sealed oracle boxes can be computer sub-
systems. We now indicate how to modify Section 2 so that it applies
to U ′ instead of U .

One begins by allowing an oracle machine M to indicate in each
entry of its table one of 9 possible actions (before there were 8). The
new possibility is to ask the oracle if the string s currently being read
on the work tape has the property that U(s) halts. In response the
oracle instantly writes a 1 on the work tape if the answer is yes and
writes a 0 if the answer is no.

After defining an arbitrary oracle machine M , and P ′
M , H ′

M , and
I ′M , one then defines the standard oracle machine U ′ which can simulate
any M . The next step is to define P ′(A), H ′(A), and I ′(A), which are
the probability, entropy, and information of the set A relative to the
halting problem. Furthermore, p is said to be an oracle program for A
if U ′(p) = A, and a minimal-size one if in addition |p| = I ′(A). Then A

Algorithmic Entropy of Sets 9

is defined to be r.e. in the halting problem if I ′(A) < ∞. One sees as
before that P ′ is maximal and H ′ and I ′ are minimal, and then defines
the corresponding joint, conditional, and mutual concepts. Lastly one
formulates the proves the corresponding Theorems 2′, 3′, 4′, and 5′.

Theorem 6. P ′(A) � P (A), H ′(A) ≤ H(A) + O(1), and I ′(A) ≤
I(A) + O(1).

Proof. There is a % = 0g1 such that for all sequences p, U ′(%p) =
U(p) and U ′ reads precisely as much of p as U does.

3. Summary and Discussion of Results

The remainder of this paper is devoted to counting the number of sets
A of different kinds having information I(A) less than n and having
entropy H(A) less than n. The kinds of A we shall consider are: single-
ton sets, consecutive sets, finite sets, cofinite sets, and arbitrary sets.
A is consecutive if it is finite and n+1 ∈ A implies n ∈ A. A is cofinite
if it contains all but finitely many natural numbers.

The following 4 pairs of estimates will be demonstrated in this pa-
per. The first pair is due to Solovay [6]. #X denotes the cardinality of
X. Sn denotes the Singleton set {n}. Cn denotes the Consecutive set
{k : k < n}.

log2 #{singleton A : I(A) < n} = n− I(Sn) + O(1).

log2 #{singleton A : H(A) < n} = n− I(Sn) + O(1).

log2 #{consecutive A : I(A) < n} = n− I(Cn) + O(log I(Cn)).

log2 #{A : I(A) < n} = n− I(Cn) + O(log I(Cn)).

log2 #{consecutive A : H(A) < n} = n− I ′(Sn) + O(1).

log2 #{finite A : H(A) < n} = n− I ′(Sn) + O(1).

log2 #{cofinite A : H(A) < n} = n− I ′(Cn) + O(log I ′(Cn)).

log2 #{A : H(A) < n} = n− I ′(Cn) + O(log I ′(Cn)).

10 G. J. Chaitin

These estimates are expressed in terms of I(Sn), I(Cn), I ′(Sn) and
I ′(Cn). These quantities are variations on a theme: specifying the
natural number n in a more or less constructive manner. I(Sn) is the
number of bits of information needed to directly calculate n. I(Cn) is
the number of bits of information needed to obtain n in the limit from
below. I ′(Sn) is the number of bits of information needed to directly
calculate n using an oracle for the halting problem. And I ′(Cn) is the
number of bits of information needed to obtain n in the limit from
below using an oracle for the halting problem. The following theorem,
whose straightforward proof is omitted, gives some facts about these
quantities and the relationship between them.

Theorem 7. I(Sn), I(Cn), I
′(Sn) and I ′(Cn)

(a) All four quantities vary smoothly. For example, |I(Sn)−I(Sm)| ≤
O(log |n−m|), and the same inequality holds for the other three
quantities.

(b) For most n all four quantities are log2 n + O(log log n). Such n
are said to be random because they are specified by table look-up
without real computation.

(c) The four ways of specifying n are increasingly indirect:

I ′(Cn) ≤ I ′(Sn) + O(1),

I ′(Sn) ≤ I(Cn) + O(1), and

I(Cn) ≤ I(Sn) + O(1).

(d) Occasionally n is random with respect to one kind of specifica-
tion, but has a great deal of pattern and its description can be
considerably condensed if more indirect means of specification are
allowed. For example, the least n ≥ 2k such that I(Sn) ≥ k has
the following properties: n < 2k+1, I(Sn) = k + O(log k) and
I(Cn) ≤ log2 k + O(log log k). This relationship between I(Sn)
and I(Cn) also holds for I(Cn) and I ′(Sn), and for I ′(Sn) and
I ′(Cn).

We see from Theorem 7(b) that all 4 pairs of estimates for log2 #n

are usually n− log2 n + O(log log n) and thus close to each other. But

Algorithmic Entropy of Sets 11

Theorem 7(c) shows that the 4 pairs are shown above in what is essen-
tially ascending numerical order. In fact, by Theorem 7(d), for each k
there is an n such that k = log2 n + O(1) and one pair of estimates is
that

log2 #n = n− log2 n + O(log log n)

while the next pair is that

log2 #n = n− (a quantity ≤ log2 log2 n) + O(log log log n).

Hence each pair of cardinalities can be an arbitrarily small fraction of
the next pair.

Having examined the comparative magnitude of these cardinalities,
we obtain two corollaries.

As was pointed out in Theorem 2(c), for singleton sets I(A) =
H(A) + O(1). Suppose consecutive sets also had this property. Then
using the fifth estimate and Theorem 7(a) one would immediately con-
clude that #{consecutive A : I(A) < n} � #{consecutive A : H(A) <
n}. But we have seen that the first of these cardinalities can be an arbi-
trarily small fraction of the second one. This contradiction shows that
consecutive sets do not have the property that I(A) = H(A) + O(1).
Nevertheless, in Section 5 it is shown that these sets do have the prop-
erty that I(A) = H(A) + O(logH(A)). Further research is needed to
clarify the relationship between I(A) and H(A) for A that are neither
singleton nor consecutive.

It is natural to ask what is the relationship between the probabilities
of sets and the probabilities of their unions, intersections, and comple-
ments. P (A ∪ B) � P (A, B) � P (A)P (B), and the same inequality
holds for P (A ∩ B). But is P (A) � P (A)? If this were the case, since
the complement of a cofinite set is finite, using the sixth estimate and
Theorem 7(a) it would immediately follow that #{finite A : H(A) < n}
is � #{cofinite A : H(A) < n}. But we have seen that the first of these
cardinalities can be an arbitrarily small fraction of the second. Hence
it is not true that P (A) � P (A). However in Section 7 it is shown that
P ′(A) � P (A).

Corollary 1.

(a) For consecutive A it is not true that I(A) = H(A) + O(1).

(b) For cofinite A it is not true that P (A) � P (A).

12 G. J. Chaitin

4. The Estimates Involving Singleton Sets

The following theorem and its proof are due to Solovay [6], who formu-
lated them in a string-entropy setting.

Definition. Consider a program p for a singleton set A. The bits
of p which have not been read by U by the time the element of A is
output are said to be superfluous.

Theorem 8.

(a) log2 #{singleton A : I(A) < n} = n− I(Sn) + O(1).

(b) log2 #{singleton A : H(A) < n} = n− I(Sn) + O(1).

Proof. (b) follows immediately from (a) by using Theorems 2(c)
and 7(a). To prove (a) we break it up into two assertions: an upper
bound on log2 #, and a lower bound.

Let us start by explaining how to mend a minimal-size program
for a singleton set. The program is mended by replacing each of its
superfluous bits by a 0 and adding an endmarker 1 bit.

There is an % = 0g1 such that if p is a mended minimal-size program
for Sj, then U(%p) = {|p| − 1} = {I(Sj)}. % accomplishes this by
instructing U to execute p in a special way: when U would normally
output the first number, it instead immediately advances the program
tape to the endmarker 1 bit, outputs the amount of tape that has been
read, and goes to sleep.

The crux of the matter is that with this %

P (Sm) ≥ #{j : I(Sj) = m}2−|%|−m−1,

and so
#{j : I(Sj) = m} � P (Sm)2m.

Substituting n−k for m and summing over all k from 1 to n, we obtain

#{j : I(Sj) < n} � P (Sn)2n
n∑

k=1

(P (Sn−k)/P (Sn))2
−k.

It is easy to see that P (Sn) � P (Sk)P (Sn−k) and so P (Sn−k)/P (Sn) �
1/P (Sk) � k2. Hence the above summation is �

n∑

k=1

k22−k,

Algorithmic Entropy of Sets 13

which converges for n = ∞. Thus

#{j : I(Sj) < n} � P (Sn)2n.

Taking logarithms of both sides and using Theorem 2(c) we finally
obtain

log2 #{j : I(Sj) < n} ≤ n− I(Sn) + O(1).

This upper bound is the first half of the proof of (a). To complete
the proof we now obtain the corresponding lower bound.

There is a % = 0g1 with the following property. Concatenate %,
a minimal-size program p for Sn with all superfluous bits deleted, and
an arbitrary string s that brings the total number of bits up to n− 1.
% is chosen so that U(%p) = Sk, where k has the property that s is a
binary numeral for it.

% instructs U to proceed as follows with the rest of its program,
which consists of the subroutine p followed by n− 1−|%p| bits of data
s. First U executes p to obtain n. Then U calculates the size of s, reads
s, converts s to a natural number k, outputs k, and goes to sleep.

The reason for considering this % is that log2 of the number of
possible choices for s is |s| = |%ps| − |%p| = n − 1 − |%| − |p| ≥
n − 1 − |%| − I(Sn). And each choice of s yields a different singleton
set Sk = U(%ps) such that I(Sk) ≤ |%ps| = n− 1. Hence

log2 #{k : I(Sk) < n} ≥ n− 1− |%| − I(Sn) = n− I(Sn) + O(1).

The proof of (a), and thus of (b), is now complete.
Theorem 8′.

(a) log2 #{singleton A : I ′(A) < n} = n− I ′(Sn) + O(1).

(b) log2 #{singleton A : H ′(A) < n} = n− I ′(Sn) + O(1).

Proof. Imagine that the proofs of Theorem 8 and its auxiliary the-
orems refer to U ′ instead of U .

5. The Remaining Estimates Involving

I(A)

Definition.

14 G. J. Chaitin

• Q(n) =
∑

P (A) (#A < n) is the probability that a set has less
than n elements.

• Q(n)t is the probability that with a program tape produced by
coin flipping, U outputs less than n different numbers by time t.
Note that Q(n)t can be calculated from n and t, and is a rational
number of the form k/2t because U can read at most t bits of
program by time t.

Lemma 1.

(a) Q(0) = 0, Q(n) ≤ Q(n + 1), limn→∞Q(n) < 1.

(b) Q(0)t = 0, Q(n)t ≤ Q(n + 1)t, limn→∞Q(n)t = 1.

(c) For n > 0, Q(n)0 = 1, Q(n)t ≥ Q(n)t+1, limt→∞Q(n)t = Q(n).

(d) If A is finite, then Q(#A + 1)−Q(#A) ≥ P (A).

Theorem 9. If A is consecutive and P (A) > 2−n, then I(A) ≤
n + I(Cn) + O(1).

Proof. There is a % = 0g1 with the following property. After reading
%, U expects to find on its program tape a string of length I(Cn) + n
which consists of a minimal-size program p for Cn appropriately merged
with the binary expansion of a rational number x = j/2n (0 ≤ j < 2n).
In parallel U executes p to obtain Cn, reads x, and outputs a consecutive
set. This is done in stages.

U begins stage t (t = 1, 2, 3, . . .) by simulating one more time quan-
tum of the computation that yields Cn. During this simulation, when-
ever it is necessary to read another bit of the program U supplies this
bit by reading the next square of the actual program tape. And when-
ever the simulated computation produces a new output (this will occur
n times), U instead takes this as a signal to read the next bit of x from
the program tape. Let xt denote the value of x based on what U has
read from its program tape by stage t. Note that 0 ≤ xt ≤ xt+1 and
limt→∞ xt = x < 1.

In the remaining portion of stage t U does the following. It cal-
culates Q(k)t for k = 0, 1, 2, . . . until Q(k)t = 1. Then it determines
mt which is the greatest value of k for which Q(k)t ≤ xt. Note that

Algorithmic Entropy of Sets 15

since Q(0)t = 0 there is always such a k. Also, since Q(k)t is monotone
decreasing in t, and xt is monotone increasing, it follows that mt is also
monotone increasing in t. Finally U outputs the mt natural numbers
less than mt, and proceeds to stage t + 1.

This concludes the description of the instructions incorporated in %.
% is now used to prove the theorem by showing that if A is consecutive
and P (A) > 2−n, then I(A) ≤ n + I(Cn) + |%|.

As pointed out in the lemma, Q(#A + 1)−Q(#A) ≥ P (A) > 2−n.
It follows that the open interval of real numbers between Q(#A) and
Q(#A + 1) contains a rational number x of the form j/2n (0 ≤ j <
2n). It is not difficult to see that one obtains a program for A that is
|%|+I(Cn)+n bits long by concatenating % and the result of merging in
an appropriate fashion a minimal-size program for Cn with the binary
expansion of x. Hence I(A) ≤ n + I(Cn) + |%| = n + I(Cn) + O(1).

Theorem 10. If A is consecutive I(A) = H(A)+O(logH(A)) and
H(A) = I(A) + O(log I(A)).

Proof. Consider a consecutive set A. By Theorem 7(a), I(Cn) =
O(log n). Restating Theorem 9, if H(A) < n then I(A) ≤ n + I(Cn) +
O(1) = n + O(log n). Taking n = H(A) + 1, we see that I(A) ≤
H(A) + O(log H(A)). Moreover, H(A) ≤ I(A) (Theorem 2(b)). Hence
I(A) = H(A) + O(log H(A)), and thus I(A) = H(A) + O(log I(A)).

Theorem 11. log2 #{A : I(A) < n} ≤ n− I(Cn) + O(log I(Cn)).
Proof. There is a % = 0g1 with the following property. Let p be an

arbitrary sequence, and suppose that U reads precisely m bits of the
program p. Then U(%p) = Cm. % accomplishes this by instructing U
to execute p in a special way: normal output is replaced by a continually
updated indication of how many bits of program have been read.

The crux of the matter is that with this %

P (Cm) ≥ #{A : I(A) = m}2−|%|−m,

and so
#{A : I(A) = m} � P (Cm)2m.

Replacing m by n− k and summing over all k from 1 to n, we obtain

#{A : I(A) < n} � P (Cn)2n
n∑

k=1

(P (Cn−k)/P (Cn))2
−k.

16 G. J. Chaitin

It is easy to see that P (Cn) � P (Ck)P (Cn−k) and so P (Cn−k)/P (Cn) �
1/P (Ck) � k2. Hence the above summation is �

n∑

k=1

k22−k,

which converges for n = ∞. Thus

#{A : I(A) < n} � P (Cn)2
n.

Taking logarithms of both sides and using

log2 P (Cn) = −I(Cn) + O(log I(Cn))

(Theorem 10), we finally obtain

log2 #{A : I(A) < n} ≤ n− I(Cn) + O(log I(Cn)).

Theorem 12.

log2 #{consecutive A : I(A) < n} ≥ n− I(Cn) + O(log I(Cn)).

Proof. There is a % = 0g1 that is used in the following manner.
Concatenate these strings: %, a minimal-size program for {I(Cn)} with
all superfluous bits deleted, a minimal-size program for Cn, and an
arbitrary string s of size sufficient to bring the total number of bits up
to n− 1. Call the resulting (n− 1)-bit string p. Note that s is at least
n− 1− |%| − I({I(Cn)})− I(Cn) bits long. Hence log2 of the number
of possible choices for s is, taking Theorem 7(a) into account, at least
n− I(Cn) + O(log I(Cn)).

% instructs U to proceed as follows with the rest of p, which consists
of two subroutines and the data s. First U executes the first subroutine
in order to calculate the size of the second subroutine and know where
s begins. Then U executes the second subroutine, and uses each new
number output by it as a signal to read another bit of the data s. Note
that U will never know when it has finished reading s. As U reads
the string s, it interprets s as the reversal of the binary numeral for
a natural number m. And U contrives to enumerate the set Cm by
outputting 2k consecutive natural numbers each time the kth bit of s
that is read is a 1.

Algorithmic Entropy of Sets 17

To recapitulate, for each choice of s one obtains an (n − 1)-bit
program p for a different consecutive set (in fact, the set Cm, where s
is the reversal of a binary numeral for m). In as much as log2 of the
number of possible choices for s was shown to be at least n− I(Cn) +
O(log I(Cn)), we conclude that log2 #{consecutive A : I(A) < n} is
≥ n− I(Cn) + O(log I(Cn)).

Theorem 13.

(a) log2 #{consecutive A : I(A) < n} = n− I(Cn) + O(log I(Cn)).

(b) log2 #{A : I(A) < n} = n− I(Cn) + O(log I(Cn)).

Proof. Since #{consecutive A : I(A) < n} ≤ #{A : I(A) < n},
this follows immediately from Theorems 12 and 11.

Theorem 13′.

(a) log2 #{consecutive A : I ′(A) < n} = n− I ′(Cn) + O(log I ′(Cn)).

(b) log2 #{A : I ′(A) < n} = n− I ′(Cn) + O(log I ′(Cn)).

Proof. Imagine that the proofs of Theorem 13 and its auxiliary
theorems refer to U ′ instead of U .

6. The Remaining Lower Bounds

In this section we construct many consecutive sets and cofinite sets with
probability greater than 2−n. To do this, computations using an oracle
for the halting problem are simulated using a fake oracle that answers
that U(p) halts iff it does so within time t. As t goes to infinity, any
finite set of questions will eventually be answered correctly by the fake
oracle. This simulation in the limit % is used to: (a) take any n-bit
oracle program p for a singleton set and construct from it a consecutive
set U(%px) with probability greater than or equal to 2−|%|−n, and (b)
take any n-bit oracle program p for a consecutive set and construct
from it a cofinite set U(%px) with probability greater than or equal to
2−|%|−n.

The critical feature of the simulation in the limit that accomplishes
(a) and (b) can best be explained in terms of two notions: harmless

18 G. J. Chaitin

overshoot and erasure. The crux of the matter is that although in
the limit the fake oracle realizes its mistakes and changes its mind, U
may already have read beyond p into x. This is called overshoot, and
could make the probability of the constructed set fall far below 2−|%|−n.
But the construction process contrives to make overshoot harmless by
eventually forgetting bits in x and by erasing its mistakes. In case (a)
erasure is accomplished by moving the end of the consecutive set. In
case (b) erasure is accomplished by filling in holes that were left in the
cofinite set. As a result bits in x do not affect which set is enumerated;
they can only affect the time at which its elements are output.

Lemma 2. With our Turing machine model, if k is output at time
≤ t, then k < t < 2t.

Theorem 14. There is a % = 0g1 with the following property.
Suppose the string p is an oracle program for Sk. Let t1 be the time at
which k is output. Consider the finite set of questions that are asked
to the oracle during these t1 time quanta. Let t2 be the maximum
time taken to halt by any program that the oracle is asked about.
(t2 = 0 if none of them halt or if no questions are asked.) Finally, let
t = max t1, t2. Then for all sequences x, %px is a program for the set
Cl, where l = 2t + k. By the lemma k can be recovered from l.

Proof. % instructs U to act as follows on px. Initially U sets i = 0.
Then U works in stages. At stage t (t = 1, 2, 3, . . .) U simulates t time
quanta of the computation U ′(px), but truncates the simulation imme-
diately if U ′ outputs a number. U fakes the halting-problem oracle used
by U ′ by answering that a program halts iff it takes ≤ t time quanta
to do so. Did an output k occur during the simulated computation?
If not, nothing more is done at this stage. If so, U does the following.
First it sets i = i + 1. Let Li be the chronological list of yes/no an-
swers given by the fake oracle during the simulation. U checks whether
i = 1 or Li−1 6= Li. (Note that Li−1 = Li iff the same questions were
asked in the same order and all the answers are the same.) If i > 1
and Li−1 = Li, U does nothing at this stage. If i = 1 or Li−1 6= Li,
U outputs all natural numbers less than 2t + k, and proceeds to stage
t + 1.

It is not difficult to see that this % proves the theorem.
Theorem 15. log2 #{consecutive A : H(A) < n} ≥ n − I ′(Sn) +

O(1).

Algorithmic Entropy of Sets 19

Proof. By Theorem 14, c = |%| has the property that for each
singleton set Sk such that I ′(Sk) < n− c there is a different l such that
P (Cl) > 2−n. Hence in view of Theorems 8(a)′ and 7(a)

log2 #{consecutive A : H(A) < n}
≥ log2 #{singleton A : I ′(A) < n− c}
≥ n− c− I ′(Sn−c) + O(1)

= n− I ′(Sn) + O(1).

Theorem 16. There is a % = 0g1 with the following property.
Suppose the string p is an oracle program for the finite set A. For each
k ∈ A, let t1k be the time at which it is output. Also, let t2k be the
maximum time taken to halt by any program that the oracle is asked
about during these t1k time quanta. Finally, let tk = max t1k, t

2
k, and

lk = 2tk +k. Then for all sequences x, %px is a program for the cofinite
set B = all natural numbers not of the form lk (k ∈ A). By the lemma
each k in A can be recovered from the corresponding lk.

Proof. % instructs U to act as follows on px in order to produce
B. U works in stages. At stage t (t = 1, 2, 3, . . .) U simulates t time
quanta of the computation U ′(px). U fakes the halting-problem oracle
used by U ′ by answering that a program halts iff it takes ≤ t time
quanta to do so. While simulating U ′(px), U notes the time at which
each output k occurs. U also keeps track of the latest stage at which
a change occurred in the chronological list of yes/no answers given by
the fake oracle during the simulation before k is output. Thus at stage
t there are current estimates for t1k, for t2k, and for tk = max t1k, t

2
k, for

each k that currently seems to be in U ′(px). As t goes to infinity these
estimates will attain the true values for k ∈ A, and will not exist or
will go to infinity for k 6∈ A.

Meanwhile U enumerates B. That part of B output by stage t
consists precisely of all natural numbers less than 2t+1 that are not of
the form 2tk +k, for any k in the current approximation to U ′(px). Here
tk denotes the current estimate for the value of tk.

It is not difficult to see that this % proves the theorem.
Theorem 17.

log2 #{cofinite A : H(A) < n} ≥ n− I ′(Cn) + O(log I ′(Cn)).

20 G. J. Chaitin

Proof. By Theorem 16, c = |%| has the property that for each
consecutive set A such that I ′(A) < n − c there is a different cofinite
set B such that P (B) > 2−n. Hence in view of Theorems 13(a)′ and
7(a)

log2 #{cofinite B : H(B) < n}
≥ log2 #{consecutive A : I ′(A) < n− c}
≥ n− c− I ′(Cn−c) + O(log I ′(Cn−c))

≥ n− I ′(Cn) + O(log I ′(Cn)).

Corollary 2. There is a % = 0g1 with the property that for every
sequence p, #U(%p) = #U ′(p).

Proof. The % in the proof of Theorem 16 has this property.

7. The Remaining Upper Bounds

In this section we use several approximations to P (A), and the notion of
the canonical index of a finite set A [5, pp. 69–71]. This is defined to be∑

2k (k ∈ A), and it establishes a one-to-one correspondence between
the natural numbers and the finite sets of natural numbers. Let Di

be the finite set whose canonical index is i. We also need to use the
concept of a recursive real number, which is a real x for which one can
compute a convergent sequence of nested open intervals with rational
end-points that contain x [5, pp. 366, 371]. This is the formal definition
corresponding to the intuitive notion that a computable real number
is one whose decimal expansion can be calculated. The recursive reals
constitute a field.

Definition. Consider a sequence p produced by flipping an unbi-
ased coin.

• P (A)t = the probability that (the output by time t of U(p)) = A.

Let s be an arbitrary string.

• P (s)t = the probability that (∀k < |s|) [k ∈ (the output by time
t of U(p)) iff the kth bit of s is a 1].

Algorithmic Entropy of Sets 21

• P (s) = the probability that (∀k < |s|) [k ∈ U(p) iff the kth bit
of s is a 1].

Note that P (Di)
t is a rational number that can be calculated from

i and t, and P (s)t is a rational number that can be calculated from s
and t.

Lemma 3.

(a) If A is finite, then P (A) = limt→∞ P (A)t.

(b) P (s) = limt→∞ P (s)t.

(c) P (Λ) = 1.

(d) P (s) = P (s0) + P (s1).

(e) Consider a set A. Let an be the n-bit string whose kth bit is a 1 iff
k ∈ A. Then P (a0) = 1, P (an) ≥ P (an+1), and limn→∞ P (an) =
P (A).

Theorem 18.

(a) P (Di) is a real recursive in the halting problem uniformly in i.

(b) P (s) is a real recursive in the halting problem uniformly in s.

This means that given i and s one can use the oracle to obtain these real
numbers as the limit of a convergent sequence of nested open intervals
with rational end-points.

Proof. Note that P (Di) > n/m iff there is a k such that P (Di)
k >

n/m and for all t > k, P (Di)
t ≥ P (Di)

k. One can use the oracle
to check whether or not a given i, n, m and k have this property,
for there is a % = 0g1 such that U(%0i10n10m10k1) does not halt
iff P (Di)

t ≥ P (Di)
k > n/m for all t > k. Thus if P (Di) > n/m

one will eventually discover this by systematically checking all possible
quadruples i, n, m and k. Similarly, one can use the oracle to discover
that P (Di) < n/m, that P (s) > n/m, and that P (s) < n/m. This is
equivalent to the assertion that P (Di) and P (s) are reals recursive in
the halting problem uniformly in i and s.

Theorem 19. P ′(Si) � P (Di).

22 G. J. Chaitin

Proof. It follows from Theorem 18(a) that there is a % = 0g1
with the following property. Consider a real number x in the interval
between 0 and 1 and the sequence px that is its binary expansion. Then
U ′(%px) = Si if x is in the open interval Ii of real numbers between∑

k<i P (Dk) and
∑

k≤i P (Dk). This shows that c = |%| has the property
that P ′(Si) ≥ 2−c (the length of the interval Ii) = 2−cP (Di). (See [7,
pp. 14–15] for a construction that is analogous.)

Theorem 20.

(a) log2 #{consecutive A : H(A) < n} = n− I ′(Sn) + O(1).

(b) log2 #{finite A : H(A) < n} = n− I ′(Sn) + O(1).

Proof. From Theorems 15, 19, 8(b)′, and 7(a), we see that

n− I ′(Sn) + O(1)

≤ log2 #{consecutive A : H(A) < n}
≤ log2 #{finite A : H(A) < n}
≤ log2 #{singleton A : H ′(A) < n + c}
≤ n + c− I ′(Sn+c) + O(1)

= n− I ′(Sn) + O(1).

Theorem 21. I ′(A, A) ≤ H(A) + O(1).
Proof. Let us start by associating with each string s an interval Is

of length P (s). First of all, IΛ is the interval of reals between 0 and 1,
which is okay because P (Λ) = 1. Then each Is is partitioned into two
parts: the subinterval Is0 of length P (s0), followed by the subinterval
Is1 of length P (s1). This works because P (s) = P (s0) + P (s1).

There is a % = 0g1 which makes U ′ behave as follows. After reading
% U ′ expects to find the sequence px, the binary expansion of a real
number x between 0 and 1. Initially U ′ sets s = Λ. U ′ then works in
stages. At stage k (k = 0, 1, 2, . . .) U ′ initially knows that x is in the
interval Is, and contrives to decide whether it is in the subinterval Is0

or in the subinterval Is1. To do this U ′ uses the oracle to calculate the
end-points of these intervals with arbitrarily high precision, by means of
the technique indicated in the proof of Theorem 18(b). And of course
U ′ also has to read px to know the value of x, but it only reads the

Algorithmic Entropy of Sets 23

program tape when it is forced to do so in order to make a decision
(this is the crux of the proof). If U ′ decides that x is in Is0 it outputs
2k and sets s = s0. If it decides that x is in Is1 it outputs 2k + 1 and
sets s = s1. Then U ′ proceeds to the next stage.

Why does this show that I ′(A, A) ≤ H(A) + O(1)? From part
(e) of the lemma it is not difficult to see that to each r.e. set A there
corresponds an open interval IA of length P (A) consisting of reals x with
the property that U ′(%px) = A join A. Moreover U ′ only reads as much
of px as is necessary; in fact, if P (A) > 2−n there is an x in IA for which
this is at most n + O(1) bits. Hence I ′(A, A) ≤ |%| + H(A) + O(1) =
H(A) + O(1).

Theorem 22.

(a) log2 #{cofinite A : H(A) < n} = n− I ′(Cn) + O(log I ′(Cn)).

(b) log2 #{A : H(A) < n} = n− I ′(Cn) + O(log I ′(Cn)).

Proof. From Theorems 17, 21, 5(a)′, 5(d)′, 13(b)′ and 7(a) we see
that

n− I ′(Cn) + O(log I ′(Cn))

≤ log2 #{cofinite A : H(A) < n}
≤ log2 #{A : H(A) < n}
≤ log2 #{A : I ′(A) < n + c}
≤ n + c− I ′(Cn+c) + O(log I ′(Cn+c))

= n− I ′(Cn) + O(log I ′(Cn)).

Corollary 3. P ′(A) � P (A).
Proof. By Theorems 2(b)′, 5(d)′ and 21, H ′(A) ≤ I ′(A) ≤ I ′(A, A)+

O(1) ≤ H(A) + O(1). Hence P ′(A) � P (A).

8. The Probability of the Set of Natural

Numbers Less than N

In the previous sections we established the results that were announced
in Section 3. The techniques that were used to do this can also be
applied to a topic of a somewhat different nature, P (Cn).

24 G. J. Chaitin

P (Cn) sheds light on two interesting quantities: Q1(n) the proba-
bility that a set has cardinality n, and Q0(n) the probability that the
complement of a set has cardinality n. We also consider a gigantic func-
tion G(n), which is the greatest natural number that can be obtained
in the limit from below with probability greater than 2−n.

Definition.

• Q1(n) =
∑

P (A) (#A = n).

• Q0(n) =
∑

P (A) (#A = n).

• G(n) = max k (P (Ck) > 2−n).

• Let ρ be the defective probability measure on the sets of natural
numbers that is defined as follows: ρA =

∑
Q1(n) (n ∈ A).

• Let µ be an arbitrary probability measure, possibly defective,
on the sets of natural numbers. µ is said to be a C-measure
if there is a function u(n, t) such that u(n, t) ≥ u(n, t + 1) and
µCn = limt→∞ u(n, t). Here it is required that u(n, t) be a rational
number that can be calculated from n and t. In other words, µ
is a C-measure if µCn can be obtained as a monotone limit from
above uniformly in n.

Theorem 23.

(a) Q1(n) � P (Cn).

(b) Q0(n) � P ′(Cn).

(c) ρ is a C-measure.

(d) If µ is a C-measure, then ρA � µA.

(e) If H ′(Sk) < n + O(1), then k < G(n).

(f) H ′(SG(n)) = n + O(1).

Proof.

(a) Note that Q1(n) ≥ P (Cn). Also, there is a % = 0g1 such that
U(%p) = C#U(p) for all sequences p. Hence P (Cn) � Q1(n).

Algorithmic Entropy of Sets 25

(b) Keep part (a) in mind. By Corollary 2, Q0(n) � Q′
1(n) � P ′(Cn).

And since P ′(A) � P (A) (Corollary 3), Q0(n) � Q′
1(n) � P ′(Cn).

(c) Lemma 1(c) states that the function Q(n)t defined in Section 5
plays the role of u(n, t).

(d) A construction similar to the proof of Theorem 9 shows that there
is a % = 0g1 with the following property. Consider a real number
x between 0 and 1 and the sequence px that is its binary expan-
sion. U(%px) = Cn if x is in the open interval In of reals between
µCn and µCn+1.

This proves part (d) because the length of the interval In is pre-
cisely µSn, and hence ρSn = Q1(n) ≥ 2−|%|µSn.

(e) By Theorem 2(c)′, if P ′(Sk) > 2−n then I ′(Sk) < n+O(1). Hence
by Theorem 14, there is an l > k such that P (Cl) � 2−n. Thus
k < l ≤ G(n + O(1)).

(f) Note that the canonical index of Cn is 2k − 1. It follows from
Theorem 19 that if P (Ck) > 2−n, then P ′({2k−1}) � 2−n. There
is a % = 0g1 such that U ′(%p) = Sk if U ′(p) = {2k − 1}. Hence if
P (Ck) > 2−n, then P ′(Sk) � P ′({2k− 1}) � 2−n. In other words,
if P (Ck) > 2−n then H ′(Sk) ≤ n + O(1). Note that by definition
P (CG(n)) > 2−n. Hence H ′(SG(n)) ≤ n + O(1). Thus in view of
(e), H ′(SG(n)) = n + O(1).

Addendum

An important advance in the line of research proposed in this paper
has been achieved by Solovay [8]; with the aid of a crucial lemma of D.
A. Martin he shows that

I(A) ≤ 3H(A) + O(log H(A)).

In [9] and [10] certain aspects of the questions treated in this paper are
examined from a somewhat different point of view.

26 G. J. Chaitin

References

[1] K. de Leeuw, E. F. Moore, C. E. Shannon and N. Shapiro, Com-
putability by probabilistic machines, in Automata Studies, C. E.
Shannon and J. McCarthy (Eds.), pp. 183–212. Princeton Uni-
versity Press, N.J. (1956).

[2] G. J. Chaitin, Randomness and mathematical proof, Scient. Am.
232 (5), 47–52 (May 1975).

[3] G. J. Chaitin, A theory of program size formally identical to in-
formation theory, J. Ass. Comput. Mach. 22 (3), 329–340 (July
1975).

[4] C. E. Shannon and W. Weaver, The Mathematical Theory of
Communication. University of Illinois, Urbana (1949).

[5] H. Rogers, Jr., Theory of Recursive Functions and Effective Com-
putability. McGraw-Hill, N.Y. (1967).

[6] R. M. Solovay, unpublished manuscript on [3] dated May 1975.

[7] S. K. Leung-Yan-Cheong and T. M. Cover, Some inequalities be-
tween Shannon entropy and Kolmogorov, Chaitin, and extension
complexities, Technical Report 16, Dept. of Statistics, Stanford
University, CA (October 1975).

[8] R. M. Solovay, On random r.e. sets, Proceedings of the Third Latin
American Symposium on Mathematical Logic. Campinas, Brazil,
(July 1976), (to appear).

[9] G. J. Chaitin, Information-theoretic characterizations of recursive
infinite strings, Theor. Comput. Sci. 2, 45–48 (1976).

[10] G. J. Chaitin, Program size, oracles, and the jump operation,
Osaka J. Math. (to appear).

Algorithmic Entropy of Sets 27

Communicated by J. T. Schwartz

Received July 1976

