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Abstract

A theory of information and computation has been developed: “algo-
rithmic information theory.” Two books [11–12] have recently been
published on this subject, as well as a number of nontechnical dis-
cussions [13–16]. The main thrust of algorithmic information the-
ory is twofold: (1) an information-theoretic mathematical definition
of random sequence via algorithmic incompressibility, and (2) strong
information-theoretic versions of Gödel’s incompleteness theorem. The
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halting probability Ω of a universal Turing machine plays a fundamental
role. Ω is an abstract example of evolution: it is of infinite complexity
and the limit of a computable sequence of rational numbers.

1. Algorithmic information theory

Algorithmic information theory [11–16] is a branch of computational
complexity theory concerned with the size of computer programs rather
than with their running time. In other words, it deals with the difficulty
of describing or specifying algorithms, rather than with the resources
needed to execute them. This theory combines features of probability
theory, information theory, statistical mechanics and thermodynamics,
and recursive function or computability theory.

It has so far had two principal applications. The first is to provide a
new conceptual foundation for probability theory based on the notion
of an individual random or unpredictable sequence, instead of the usual
measure-theoretic formulation in which the key notion is the distribu-
tion of measure among an ensemble of possibilities. The second major
application of algorithmic information theory has been the dramatic
new light it throws on Gödel’s famous incompleteness theorem and on
the limitations of the axiomatic method.

The main concept of algorithmic information theory is that of the
program-size complexity or algorithmic information content of an ob-
ject (usually just called its “complexity”). This is defined to be the size
in bits of the shortest computer program that calculates the object, i.e.,
the size of its minimal algorithmic description. Note that we consider
computer programs to be bit strings and we measure their size in bits.

If the object being calculated is itself a finite string of bits, and
its minimal description is no smaller than the string itself, then the
bit string is said to be algorithmically incompressible, algorithmically
irreducible, or algorithmically random. Such strings have the statistical
properties that one would expect. For example, 0’s and 1’s must occur
with nearly equal relative frequency; otherwise the bit string could be
compressed.

An infinite bit string is said to be algorithmically incompressible,
algorithmically irreducible, or algorithmically random if all its initial
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segments are algorithmically random finite bit strings.
A related concept is the mutual algorithmic information content of

two objects. This is the extent to which it is simpler to calculate them
together than to calculate them separately, i.e., the extent to which
their joint algorithmic information content is less than the sum of their
individual algorithmic information contents. Two objects are algorith-
mically independent if their mutual algorithmic information content is
zero, i.e., if calculating them together doesn’t help.

These concepts provide a new conceptual foundation for probability
theory based on the notion of an individual random string of bits, rather
than the usual measure-theoretic approach. They also shed new light
on Gödel’s incompleteness theorem, for in some circumstances it is
possible to argue that the unprovability of certain true assertions follows
naturally from the fact that their algorithmic information content is
greater than the algorithmic information content of the axioms and
rules of inference being employed.

For example, the N -bit string of outcomes of N successive indepen-
dent tosses of a fair coin almost certainly has algorithmic information
content greater than N and is algorithmically incompressible or ran-
dom. But to prove this in the case of a particular N -bit string turns
out to require at least N bits of axioms, even though it is almost always
true. In other words, most finite bit strings are random, but individual
bits strings cannot be proved to be random [3].

Here is an even more dramatic example of this information-theoretic
approach to the incompleteness of formal systems of axioms. I have
shown that there is sometimes complete randomness in elementary
number theory [11, 13, 15–16]. I have constructed [11] a two-hundred
page exponential diophantine equation with the property that the num-
ber of solutions jumps from finite to infinite at random as a parameter
is varied.

In other words, whether the number of solutions is finite or infinite
in each case cannot be distinguished from independent tosses of a fair
coin. This is an infinite amount of independent, irreducible mathemat-
ical information that cannot be compressed into any finite number of
axioms. I.e., essentially the only way to prove these assertions is to
assume them as axioms!

This completes our sketch of algorithmic information theory. Now
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let’s turn to biology.

2. Evolution

The origin of life and its evolution from simpler to more complex forms,
the origin of biological complexity and diversity, and more generally
the reason for the essential difference in character between biology and
physics, are of course extremely fundamental scientific questions.

While Darwinian evolution, Mendelian genetics, and modern molec-
ular biology have immensely enriched our understanding of these ques-
tions, it is surprising to me that such fundamental scientific ideas should
not be reflected in any substantive way in the world of mathematical
ideas. In spite of the persuasiveness of the informal considerations that
adorn biological discussions, it has not yet been possible to extract any
nuggets of rigorous mathematical reasoning, to distill any fundamental
new rigorous mathematical concepts.

In particular, by historical coincidence the extraordinary recent
progress in molecular biology has coincided with parallel progress in
the emergent field of computational complexity, a branch of theoretical
computer science. But in spite of the fact that the word “complexity”
springs naturally to mind in both fields, there is at present little contact
between these two worlds of ideas!

The ultimate goal, in fact, would be to set up a toy world, to define
mathematically what is an organism and how to measure its complexity,
and to prove that life will spontaneously arise and increase in complex-
ity with time.

3. Does algorithmic information theory ap-

ply to biology?

Can the concepts of algorithmic information theory help us to define
mathematically the notion of biological complexity?

One possibility is to ask what is the algorithmic information con-
tent of the sequence of bases in a particular strand of DNA. Another
possibility is to ask what is the algorithmic information content of the
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organism as a whole (it must be in discrete symbolic form, e.g., imbed-
ded in a cellular automata model).

Mutual algorithmic information might also be useful in biology. For
example, it could be used for pattern recognition, to determine the
physical boundaries of an organism. This approach to a task which is
sort of like defining the extent of a cloud, defines an organism to be a
region whose parts have high mutual algorithmic information content,
i.e., to be a highly correlated, in an information-theoretic sense, region
of space.

Another application of the notion of mutual algorithmic information
content might be to measure how closely related are two strands of
DNA, two cells, or two organisms. The higher the mutual algorithmic
information content, the more closely related they are.

These would be one’s initial hopes. But, as we shall see in reviewing
previous work, it is not that easy!

4. Previous work

I have been concerned with these extremely difficult questions for the
past twenty years, and have a series of publications [1–2, 7–13] devoted
in whole or in part to searching for ties between the concepts of al-
gorithmic information theory and the notion of biological information
and complexity.

In spite of the fact that a satisfactory definition of randomness or
lack of structure has been achieved in algorithmic information theory,
the first thing that one notices is that it is not ipso facto useful in
biology. For applying this notion to physical structures, one sees that
a gas is the most random, and a crystal the least random, but neither
has any significant biological organization.

My first thought was therefore that the notion of mutual or com-
mon information, which measures the degree of correlation between two
structures, might be more appropriate in a biological context. I devel-
oped these ideas in a 1970 paper [1], and again in a 1979 paper [8] using
the more-correct self-delimiting program-size complexity measures.

In the concluding chapter of my Cambridge University Press book
[11] I turned to these questions again, with a number of new thoughts,
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among them to determine where biological questions fall in what logi-
cians call the “arithmetical hierarchy.”

The concluding remarks of my 1988 Scientific American article [13]
emphasize what I think is probably the main contribution of the chapter
at the end of my book [11]. This is the fact that in a sense there is a
kind of evolution of complexity taking place in algorithmic information
theory, and indeed in a very natural context.

The remaining publications [2, 7, 9–10, 12] emphasize the impor-
tance of the problem, but do not make new suggestions.

5. The halting probability Ω as a model of

evolution

What is this natural and previously unappreciated example of the evo-
lution of complexity in algorithmic information theory?

In this theory the halting probability Ω of a universal Turing ma-
chine plays a fundamental role. Ω is used to construct the two-hundred
page equation mentioned above. If the value of its parameter is K, this
equation has finitely or infinitely many solutions depending on whether
the Kth bit of the base-two expansion of Ω is a 0 or a 1.

Indeed, to Turing’s fundamental theorem in computability theory
that the halting problem is unsolvable, there corresponds in algorithmic
information theory my theorem [4] that the halting probability Ω is a
random real number. In other words, any program that calculates N
bits of the binary expansion of Ω is no better than a table look-up,
because it must itself be at least N bits long. I.e., Ω is incompressible,
irreducible information.

And it is Ω itself that is our abstract example of evolution! For
even though Ω is of infinite complexity, it is the limit of a computable
sequence of rational numbers, each of which is of finite but eventually
increasing complexity. Here of course I am using the word “complexity”
in the technical sense of algorithmic information theory, in which the
complexity of something is measured by the size in bits of the small-
est program for calculating it. However this computable sequence of
rational numbers converges to Ω very, very slowly.
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In precisely what sense are we getting infinite complexity in the
limit of infinite time?

Well, it is trivial that in any infinite set of objects, almost all of them
are arbitrarily complex, because there are only finitely many objects
of bounded complexity. (In fact, there are less than 2N objects of
complexity less than N .) So we should not look at the complexity of
each of the rational numbers in the computable sequence that gives Ω
in the limit.

The right way to see the complexity increase is to focus on the first
K bits of each of the rational numbers in the computable sequence.
The complexity of this sequence of K bits initially jumps about but
will eventually stay above K.

What precisely is the origin of this metaphor for evolution? Where
does this computable sequence of approximations to Ω come from?
It arises quite naturally, as I explain in my 1988 Scientific American
article [13].

The Nth approximation to Ω, that is to say, the Nth stage in the
computable evolution leading in the infinite limit to the violently un-
computable infinitely complex number Ω, is determined as follows. One
merely considers all programs up to N bits in size and runs each mem-
ber of this finite set of programs for N seconds on the standard universal
Turing machine. Each program K bits long that halts before its time
runs out contributes measure 2−K to the halting probability Ω. Indeed,
this is a computable monotone increasing sequence of lower bounds on
the value of Ω that converges to Ω, but very, very slowly indeed.

This “evolutionary” model for computing Ω shows that one way
to produce algorithmic information or complexity is by doing immense
amounts of computation. Indeed, biology has been “computing” using
molecular-size components in parallel across the entire surface of the
earth for several billion years, which is an awful lot of computing.

On the other hand, an easier way to produce algorithmic informa-
tion or complexity is, as we have seen, to simply toss a coin. This would
seem to be the predominant biological source of algorithmic informa-
tion, the frozen accidents of the evolutionary trail of mutations that
are preserved in DNA.

So two different sources of algorithmic information do seem bio-
logically plausible, and would seem to give rise to different kinds of
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algorithmic information.

6. Technical note: A finite version of this

model

There is also a “finite” version of this abstract model of evolution. In
it one fixes N and constructs a computable infinite sequence st = s(t)
of N -bit strings, with the property that for all sufficiently large times t,
st = st+1 is a fixed random N -bit string, i.e., one for which its program-
size complexity H(st) is not less than its size in bits N . In fact, we
can take st to be the first N -bit string that cannot be produced by any
program less than N bits in size in less than t seconds.

In a sense, the N bits of information in st for t large are coming
from t itself. So one way to state this, is that knowing a sufficiently
large natural number t is “equivalent to having an oracle for the halting
problem” (as a logician would put it). That is to say, it provides as
much information as one wants.

By the way, computations in the limit are extensively discussed in
my two papers [5–6], but in connection with questions of interest in
algorithmic information theory rather than in biology.

7. Conclusion

To conclude, I must emphasize a number of disclaimers.
First of all, Ω is a metaphor for evolution only in an extremely

abstract mathematical sense. The measures of complexity that I use,
while very pretty mathematically, pay for this prettiness by having
limited contact with the real world.

In particular, I postulate no limit on the amount of time that may
be taken to compute an object from its minimal-size description, as
long as the amount of time is finite. Nine months is already a long
time to ask a woman to devote to producing a working human infant
from its DNA description. A pregnancy of a billion years, while okay
in algorithmic information theory, is ridiculous in a biological context.
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Yet I think it would also be a mistake to underestimate the signif-
icance of these steps in the direction of a fundamental mathematical
theory of evolution. For it is important to start bringing rigorous con-
cepts and mathematical proofs into the discussion of these absolutely
fundamental biological questions, and this, although to a very limited
extent, has been achieved.
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